Metamath Proof Explorer


Theorem reccl

Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion reccl
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC )

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 divcl
 |-  ( ( 1 e. CC /\ A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC )
3 1 2 mp3an1
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC )