Metamath Proof Explorer


Theorem reccli

Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)

Ref Expression
Hypotheses divclz.1
|- A e. CC
reccl.2
|- A =/= 0
Assertion reccli
|- ( 1 / A ) e. CC

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 reccl.2
 |-  A =/= 0
3 1 recclzi
 |-  ( A =/= 0 -> ( 1 / A ) e. CC )
4 2 3 ax-mp
 |-  ( 1 / A ) e. CC