| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 2 |
1
|
oveq1i |
|- ( ( 1 / 1 ) / ( A / B ) ) = ( 1 / ( A / B ) ) |
| 3 |
|
ax-1cn |
|- 1 e. CC |
| 4 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 5 |
3 4
|
pm3.2i |
|- ( 1 e. CC /\ 1 =/= 0 ) |
| 6 |
|
divdivdiv |
|- ( ( ( 1 e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) ) /\ ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( 1 / 1 ) / ( A / B ) ) = ( ( 1 x. B ) / ( 1 x. A ) ) ) |
| 7 |
3 5 6
|
mpanl12 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / 1 ) / ( A / B ) ) = ( ( 1 x. B ) / ( 1 x. A ) ) ) |
| 8 |
2 7
|
eqtr3id |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( ( 1 x. B ) / ( 1 x. A ) ) ) |
| 9 |
|
mullid |
|- ( B e. CC -> ( 1 x. B ) = B ) |
| 10 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 11 |
9 10
|
oveqan12rd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 x. B ) / ( 1 x. A ) ) = ( B / A ) ) |
| 12 |
11
|
ad2ant2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 x. B ) / ( 1 x. A ) ) = ( B / A ) ) |
| 13 |
8 12
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |