Description: Division into a reciprocal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
| divcld.2 | |- ( ph -> B e. CC ) |
||
| divne0d.3 | |- ( ph -> A =/= 0 ) |
||
| divne0d.4 | |- ( ph -> B =/= 0 ) |
||
| Assertion | recdiv2d | |- ( ph -> ( ( 1 / A ) / B ) = ( 1 / ( A x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | |- ( ph -> A e. CC ) |
|
| 2 | divcld.2 | |- ( ph -> B e. CC ) |
|
| 3 | divne0d.3 | |- ( ph -> A =/= 0 ) |
|
| 4 | divne0d.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | recdiv2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) / B ) = ( 1 / ( A x. B ) ) ) |
|
| 6 | 1 3 2 4 5 | syl22anc | |- ( ph -> ( ( 1 / A ) / B ) = ( 1 / ( A x. B ) ) ) |