Metamath Proof Explorer


Theorem recdiv2d

Description: Division into a reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1
|- ( ph -> A e. CC )
divcld.2
|- ( ph -> B e. CC )
divne0d.3
|- ( ph -> A =/= 0 )
divne0d.4
|- ( ph -> B =/= 0 )
Assertion recdiv2d
|- ( ph -> ( ( 1 / A ) / B ) = ( 1 / ( A x. B ) ) )

Proof

Step Hyp Ref Expression
1 div1d.1
 |-  ( ph -> A e. CC )
2 divcld.2
 |-  ( ph -> B e. CC )
3 divne0d.3
 |-  ( ph -> A =/= 0 )
4 divne0d.4
 |-  ( ph -> B =/= 0 )
5 recdiv2
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) / B ) = ( 1 / ( A x. B ) ) )
6 1 3 2 4 5 syl22anc
 |-  ( ph -> ( ( 1 / A ) / B ) = ( 1 / ( A x. B ) ) )