Step |
Hyp |
Ref |
Expression |
1 |
|
recex |
|- ( ( B e. CC /\ B =/= 0 ) -> E. y e. CC ( B x. y ) = 1 ) |
2 |
1
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. y e. CC ( B x. y ) = 1 ) |
3 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> y e. CC ) |
4 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> A e. CC ) |
5 |
3 4
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( y x. A ) e. CC ) |
6 |
|
oveq1 |
|- ( ( B x. y ) = 1 -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
7 |
6
|
ad2antll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
8 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> B e. CC ) |
9 |
8 3 4
|
mulassd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( B x. ( y x. A ) ) ) |
10 |
4
|
mulid2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( 1 x. A ) = A ) |
11 |
7 9 10
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( B x. ( y x. A ) ) = A ) |
12 |
|
oveq2 |
|- ( x = ( y x. A ) -> ( B x. x ) = ( B x. ( y x. A ) ) ) |
13 |
12
|
eqeq1d |
|- ( x = ( y x. A ) -> ( ( B x. x ) = A <-> ( B x. ( y x. A ) ) = A ) ) |
14 |
13
|
rspcev |
|- ( ( ( y x. A ) e. CC /\ ( B x. ( y x. A ) ) = A ) -> E. x e. CC ( B x. x ) = A ) |
15 |
5 11 14
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> E. x e. CC ( B x. x ) = A ) |
16 |
15
|
rexlimdvaa |
|- ( ( A e. CC /\ B e. CC ) -> ( E. y e. CC ( B x. y ) = 1 -> E. x e. CC ( B x. x ) = A ) ) |
17 |
16
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( E. y e. CC ( B x. y ) = 1 -> E. x e. CC ( B x. x ) = A ) ) |
18 |
2 17
|
mpd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. x e. CC ( B x. x ) = A ) |
19 |
|
eqtr3 |
|- ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> ( B x. x ) = ( B x. y ) ) |
20 |
|
mulcan |
|- ( ( x e. CC /\ y e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( B x. x ) = ( B x. y ) <-> x = y ) ) |
21 |
19 20
|
syl5ib |
|- ( ( x e. CC /\ y e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
22 |
21
|
3expa |
|- ( ( ( x e. CC /\ y e. CC ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
23 |
22
|
expcom |
|- ( ( B e. CC /\ B =/= 0 ) -> ( ( x e. CC /\ y e. CC ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
24 |
23
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( x e. CC /\ y e. CC ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
25 |
24
|
ralrimivv |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A. x e. CC A. y e. CC ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
26 |
|
oveq2 |
|- ( x = y -> ( B x. x ) = ( B x. y ) ) |
27 |
26
|
eqeq1d |
|- ( x = y -> ( ( B x. x ) = A <-> ( B x. y ) = A ) ) |
28 |
27
|
reu4 |
|- ( E! x e. CC ( B x. x ) = A <-> ( E. x e. CC ( B x. x ) = A /\ A. x e. CC A. y e. CC ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
29 |
18 25 28
|
sylanbrc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |