| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recex |
|- ( ( B e. CC /\ B =/= 0 ) -> E. y e. CC ( B x. y ) = 1 ) |
| 2 |
1
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. y e. CC ( B x. y ) = 1 ) |
| 3 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> y e. CC ) |
| 4 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> A e. CC ) |
| 5 |
3 4
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( y x. A ) e. CC ) |
| 6 |
|
oveq1 |
|- ( ( B x. y ) = 1 -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
| 7 |
6
|
ad2antll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
| 8 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> B e. CC ) |
| 9 |
8 3 4
|
mulassd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( B x. ( y x. A ) ) ) |
| 10 |
4
|
mullidd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( 1 x. A ) = A ) |
| 11 |
7 9 10
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( B x. ( y x. A ) ) = A ) |
| 12 |
|
oveq2 |
|- ( x = ( y x. A ) -> ( B x. x ) = ( B x. ( y x. A ) ) ) |
| 13 |
12
|
eqeq1d |
|- ( x = ( y x. A ) -> ( ( B x. x ) = A <-> ( B x. ( y x. A ) ) = A ) ) |
| 14 |
13
|
rspcev |
|- ( ( ( y x. A ) e. CC /\ ( B x. ( y x. A ) ) = A ) -> E. x e. CC ( B x. x ) = A ) |
| 15 |
5 11 14
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> E. x e. CC ( B x. x ) = A ) |
| 16 |
15
|
rexlimdvaa |
|- ( ( A e. CC /\ B e. CC ) -> ( E. y e. CC ( B x. y ) = 1 -> E. x e. CC ( B x. x ) = A ) ) |
| 17 |
16
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( E. y e. CC ( B x. y ) = 1 -> E. x e. CC ( B x. x ) = A ) ) |
| 18 |
2 17
|
mpd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. x e. CC ( B x. x ) = A ) |
| 19 |
|
eqtr3 |
|- ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> ( B x. x ) = ( B x. y ) ) |
| 20 |
|
mulcan |
|- ( ( x e. CC /\ y e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( B x. x ) = ( B x. y ) <-> x = y ) ) |
| 21 |
19 20
|
imbitrid |
|- ( ( x e. CC /\ y e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 22 |
21
|
3expa |
|- ( ( ( x e. CC /\ y e. CC ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 23 |
22
|
expcom |
|- ( ( B e. CC /\ B =/= 0 ) -> ( ( x e. CC /\ y e. CC ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 24 |
23
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( x e. CC /\ y e. CC ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 25 |
24
|
ralrimivv |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A. x e. CC A. y e. CC ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 26 |
|
oveq2 |
|- ( x = y -> ( B x. x ) = ( B x. y ) ) |
| 27 |
26
|
eqeq1d |
|- ( x = y -> ( ( B x. x ) = A <-> ( B x. y ) = A ) ) |
| 28 |
27
|
reu4 |
|- ( E! x e. CC ( B x. x ) = A <-> ( E. x e. CC ( B x. x ) = A /\ A. x e. CC A. y e. CC ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 29 |
18 25 28
|
sylanbrc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |