Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
|- ( A e. CC -> E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) ) |
2 |
|
recextlem2 |
|- ( ( a e. RR /\ b e. RR /\ ( a + ( _i x. b ) ) =/= 0 ) -> ( ( a x. a ) + ( b x. b ) ) =/= 0 ) |
3 |
2
|
3expia |
|- ( ( a e. RR /\ b e. RR ) -> ( ( a + ( _i x. b ) ) =/= 0 -> ( ( a x. a ) + ( b x. b ) ) =/= 0 ) ) |
4 |
|
remulcl |
|- ( ( a e. RR /\ a e. RR ) -> ( a x. a ) e. RR ) |
5 |
4
|
anidms |
|- ( a e. RR -> ( a x. a ) e. RR ) |
6 |
|
remulcl |
|- ( ( b e. RR /\ b e. RR ) -> ( b x. b ) e. RR ) |
7 |
6
|
anidms |
|- ( b e. RR -> ( b x. b ) e. RR ) |
8 |
|
readdcl |
|- ( ( ( a x. a ) e. RR /\ ( b x. b ) e. RR ) -> ( ( a x. a ) + ( b x. b ) ) e. RR ) |
9 |
5 7 8
|
syl2an |
|- ( ( a e. RR /\ b e. RR ) -> ( ( a x. a ) + ( b x. b ) ) e. RR ) |
10 |
|
ax-rrecex |
|- ( ( ( ( a x. a ) + ( b x. b ) ) e. RR /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) |
11 |
9 10
|
sylan |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) |
12 |
|
recn |
|- ( a e. RR -> a e. CC ) |
13 |
|
recn |
|- ( b e. RR -> b e. CC ) |
14 |
|
recn |
|- ( y e. RR -> y e. CC ) |
15 |
|
ax-icn |
|- _i e. CC |
16 |
|
mulcl |
|- ( ( _i e. CC /\ b e. CC ) -> ( _i x. b ) e. CC ) |
17 |
15 16
|
mpan |
|- ( b e. CC -> ( _i x. b ) e. CC ) |
18 |
|
subcl |
|- ( ( a e. CC /\ ( _i x. b ) e. CC ) -> ( a - ( _i x. b ) ) e. CC ) |
19 |
17 18
|
sylan2 |
|- ( ( a e. CC /\ b e. CC ) -> ( a - ( _i x. b ) ) e. CC ) |
20 |
|
mulcl |
|- ( ( ( a - ( _i x. b ) ) e. CC /\ y e. CC ) -> ( ( a - ( _i x. b ) ) x. y ) e. CC ) |
21 |
19 20
|
sylan |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( a - ( _i x. b ) ) x. y ) e. CC ) |
22 |
|
addcl |
|- ( ( a e. CC /\ ( _i x. b ) e. CC ) -> ( a + ( _i x. b ) ) e. CC ) |
23 |
17 22
|
sylan2 |
|- ( ( a e. CC /\ b e. CC ) -> ( a + ( _i x. b ) ) e. CC ) |
24 |
23
|
adantr |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( a + ( _i x. b ) ) e. CC ) |
25 |
19
|
adantr |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( a - ( _i x. b ) ) e. CC ) |
26 |
|
simpr |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> y e. CC ) |
27 |
24 25 26
|
mulassd |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) x. y ) = ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) ) |
28 |
|
recextlem1 |
|- ( ( a e. CC /\ b e. CC ) -> ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) = ( ( a x. a ) + ( b x. b ) ) ) |
29 |
28
|
adantr |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) = ( ( a x. a ) + ( b x. b ) ) ) |
30 |
29
|
oveq1d |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) x. y ) = ( ( ( a x. a ) + ( b x. b ) ) x. y ) ) |
31 |
27 30
|
eqtr3d |
|- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = ( ( ( a x. a ) + ( b x. b ) ) x. y ) ) |
32 |
|
id |
|- ( ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) |
33 |
31 32
|
sylan9eq |
|- ( ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) /\ ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) -> ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = 1 ) |
34 |
|
oveq2 |
|- ( x = ( ( a - ( _i x. b ) ) x. y ) -> ( ( a + ( _i x. b ) ) x. x ) = ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) ) |
35 |
34
|
eqeq1d |
|- ( x = ( ( a - ( _i x. b ) ) x. y ) -> ( ( ( a + ( _i x. b ) ) x. x ) = 1 <-> ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = 1 ) ) |
36 |
35
|
rspcev |
|- ( ( ( ( a - ( _i x. b ) ) x. y ) e. CC /\ ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = 1 ) -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) |
37 |
21 33 36
|
syl2an2r |
|- ( ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) /\ ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) |
38 |
37
|
exp31 |
|- ( ( a e. CC /\ b e. CC ) -> ( y e. CC -> ( ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) ) |
39 |
14 38
|
syl5 |
|- ( ( a e. CC /\ b e. CC ) -> ( y e. RR -> ( ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) ) |
40 |
39
|
rexlimdv |
|- ( ( a e. CC /\ b e. CC ) -> ( E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
41 |
12 13 40
|
syl2an |
|- ( ( a e. RR /\ b e. RR ) -> ( E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
42 |
41
|
adantr |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> ( E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
43 |
11 42
|
mpd |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) |
44 |
43
|
ex |
|- ( ( a e. RR /\ b e. RR ) -> ( ( ( a x. a ) + ( b x. b ) ) =/= 0 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
45 |
3 44
|
syld |
|- ( ( a e. RR /\ b e. RR ) -> ( ( a + ( _i x. b ) ) =/= 0 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
46 |
45
|
adantr |
|- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( ( a + ( _i x. b ) ) =/= 0 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
47 |
|
neeq1 |
|- ( A = ( a + ( _i x. b ) ) -> ( A =/= 0 <-> ( a + ( _i x. b ) ) =/= 0 ) ) |
48 |
47
|
adantl |
|- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( A =/= 0 <-> ( a + ( _i x. b ) ) =/= 0 ) ) |
49 |
|
oveq1 |
|- ( A = ( a + ( _i x. b ) ) -> ( A x. x ) = ( ( a + ( _i x. b ) ) x. x ) ) |
50 |
49
|
eqeq1d |
|- ( A = ( a + ( _i x. b ) ) -> ( ( A x. x ) = 1 <-> ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
51 |
50
|
rexbidv |
|- ( A = ( a + ( _i x. b ) ) -> ( E. x e. CC ( A x. x ) = 1 <-> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
52 |
51
|
adantl |
|- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( E. x e. CC ( A x. x ) = 1 <-> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
53 |
46 48 52
|
3imtr4d |
|- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) |
54 |
53
|
ex |
|- ( ( a e. RR /\ b e. RR ) -> ( A = ( a + ( _i x. b ) ) -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) ) |
55 |
54
|
rexlimivv |
|- ( E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) |
56 |
1 55
|
syl |
|- ( A e. CC -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) |
57 |
56
|
imp |
|- ( ( A e. CC /\ A =/= 0 ) -> E. x e. CC ( A x. x ) = 1 ) |