Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( z = w -> ( z w |
2 |
1
|
anbi1d |
|- ( z = w -> ( ( z ( w |
3 |
2
|
exbidv |
|- ( z = w -> ( E. y ( z E. y ( w |
4 |
3
|
cbvabv |
|- { z | E. y ( z |
5 |
4
|
reclem2pr |
|- ( A e. P. -> { z | E. y ( z |
6 |
4
|
reclem4pr |
|- ( A e. P. -> ( A .P. { z | E. y ( z |
7 |
|
oveq2 |
|- ( x = { z | E. y ( z ( A .P. x ) = ( A .P. { z | E. y ( z |
8 |
7
|
eqeq1d |
|- ( x = { z | E. y ( z ( ( A .P. x ) = 1P <-> ( A .P. { z | E. y ( z |
9 |
8
|
rspcev |
|- ( ( { z | E. y ( z E. x e. P. ( A .P. x ) = 1P ) |
10 |
5 6 9
|
syl2anc |
|- ( A e. P. -> E. x e. P. ( A .P. x ) = 1P ) |