| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 4 |
2 3
|
mpan |
|- ( B e. CC -> ( _i x. B ) e. CC ) |
| 5 |
4
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 6 |
|
subcl |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A - ( _i x. B ) ) e. CC ) |
| 7 |
4 6
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( A - ( _i x. B ) ) e. CC ) |
| 8 |
1 5 7
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A x. ( A - ( _i x. B ) ) ) + ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) ) ) |
| 9 |
1 1 5
|
subdid |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( A - ( _i x. B ) ) ) = ( ( A x. A ) - ( A x. ( _i x. B ) ) ) ) |
| 10 |
5 1 5
|
subdid |
|- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) = ( ( ( _i x. B ) x. A ) - ( ( _i x. B ) x. ( _i x. B ) ) ) ) |
| 11 |
|
mulcom |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A x. ( _i x. B ) ) = ( ( _i x. B ) x. A ) ) |
| 12 |
4 11
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( _i x. B ) ) = ( ( _i x. B ) x. A ) ) |
| 13 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 14 |
13
|
oveq1i |
|- ( ( _i x. _i ) x. ( B x. B ) ) = ( -u 1 x. ( B x. B ) ) |
| 15 |
|
mulcl |
|- ( ( B e. CC /\ B e. CC ) -> ( B x. B ) e. CC ) |
| 16 |
15
|
mulm1d |
|- ( ( B e. CC /\ B e. CC ) -> ( -u 1 x. ( B x. B ) ) = -u ( B x. B ) ) |
| 17 |
14 16
|
eqtr2id |
|- ( ( B e. CC /\ B e. CC ) -> -u ( B x. B ) = ( ( _i x. _i ) x. ( B x. B ) ) ) |
| 18 |
|
mul4 |
|- ( ( ( _i e. CC /\ _i e. CC ) /\ ( B e. CC /\ B e. CC ) ) -> ( ( _i x. _i ) x. ( B x. B ) ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 19 |
2 2 18
|
mpanl12 |
|- ( ( B e. CC /\ B e. CC ) -> ( ( _i x. _i ) x. ( B x. B ) ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 20 |
17 19
|
eqtrd |
|- ( ( B e. CC /\ B e. CC ) -> -u ( B x. B ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 21 |
20
|
anidms |
|- ( B e. CC -> -u ( B x. B ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 22 |
21
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> -u ( B x. B ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 23 |
12 22
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) = ( ( ( _i x. B ) x. A ) - ( ( _i x. B ) x. ( _i x. B ) ) ) ) |
| 24 |
10 23
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) = ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) |
| 25 |
9 24
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( A - ( _i x. B ) ) ) + ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) ) = ( ( ( A x. A ) - ( A x. ( _i x. B ) ) ) + ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) ) |
| 26 |
|
mulcl |
|- ( ( A e. CC /\ A e. CC ) -> ( A x. A ) e. CC ) |
| 27 |
26
|
anidms |
|- ( A e. CC -> ( A x. A ) e. CC ) |
| 28 |
27
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. A ) e. CC ) |
| 29 |
|
mulcl |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A x. ( _i x. B ) ) e. CC ) |
| 30 |
4 29
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( _i x. B ) ) e. CC ) |
| 31 |
15
|
negcld |
|- ( ( B e. CC /\ B e. CC ) -> -u ( B x. B ) e. CC ) |
| 32 |
31
|
anidms |
|- ( B e. CC -> -u ( B x. B ) e. CC ) |
| 33 |
32
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> -u ( B x. B ) e. CC ) |
| 34 |
28 30 33
|
npncand |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. A ) - ( A x. ( _i x. B ) ) ) + ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) = ( ( A x. A ) - -u ( B x. B ) ) ) |
| 35 |
15
|
anidms |
|- ( B e. CC -> ( B x. B ) e. CC ) |
| 36 |
|
subneg |
|- ( ( ( A x. A ) e. CC /\ ( B x. B ) e. CC ) -> ( ( A x. A ) - -u ( B x. B ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
| 37 |
27 35 36
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. A ) - -u ( B x. B ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
| 38 |
34 37
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. A ) - ( A x. ( _i x. B ) ) ) + ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
| 39 |
8 25 38
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A x. A ) + ( B x. B ) ) ) |