| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( B = 0 -> ( _i x. B ) = ( _i x. 0 ) ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
2
|
mul01i |
|- ( _i x. 0 ) = 0 |
| 4 |
1 3
|
eqtrdi |
|- ( B = 0 -> ( _i x. B ) = 0 ) |
| 5 |
|
oveq12 |
|- ( ( A = 0 /\ ( _i x. B ) = 0 ) -> ( A + ( _i x. B ) ) = ( 0 + 0 ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( A = 0 /\ B = 0 ) -> ( A + ( _i x. B ) ) = ( 0 + 0 ) ) |
| 7 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 8 |
6 7
|
eqtrdi |
|- ( ( A = 0 /\ B = 0 ) -> ( A + ( _i x. B ) ) = 0 ) |
| 9 |
8
|
necon3ai |
|- ( ( A + ( _i x. B ) ) =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
| 10 |
|
neorian |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
| 11 |
9 10
|
sylibr |
|- ( ( A + ( _i x. B ) ) =/= 0 -> ( A =/= 0 \/ B =/= 0 ) ) |
| 12 |
|
remulcl |
|- ( ( A e. RR /\ A e. RR ) -> ( A x. A ) e. RR ) |
| 13 |
12
|
anidms |
|- ( A e. RR -> ( A x. A ) e. RR ) |
| 14 |
|
remulcl |
|- ( ( B e. RR /\ B e. RR ) -> ( B x. B ) e. RR ) |
| 15 |
14
|
anidms |
|- ( B e. RR -> ( B x. B ) e. RR ) |
| 16 |
13 15
|
anim12i |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) ) |
| 17 |
|
msqgt0 |
|- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |
| 18 |
|
msqge0 |
|- ( B e. RR -> 0 <_ ( B x. B ) ) |
| 19 |
17 18
|
anim12i |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) |
| 20 |
19
|
an32s |
|- ( ( ( A e. RR /\ B e. RR ) /\ A =/= 0 ) -> ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) |
| 21 |
|
addgtge0 |
|- ( ( ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) /\ ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 22 |
16 20 21
|
syl2an2r |
|- ( ( ( A e. RR /\ B e. RR ) /\ A =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 23 |
|
msqge0 |
|- ( A e. RR -> 0 <_ ( A x. A ) ) |
| 24 |
|
msqgt0 |
|- ( ( B e. RR /\ B =/= 0 ) -> 0 < ( B x. B ) ) |
| 25 |
23 24
|
anim12i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) |
| 26 |
25
|
anassrs |
|- ( ( ( A e. RR /\ B e. RR ) /\ B =/= 0 ) -> ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) |
| 27 |
|
addgegt0 |
|- ( ( ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) /\ ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 28 |
16 26 27
|
syl2an2r |
|- ( ( ( A e. RR /\ B e. RR ) /\ B =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 29 |
22 28
|
jaodan |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 30 |
11 29
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A + ( _i x. B ) ) =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 31 |
30
|
3impa |
|- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
| 32 |
31
|
gt0ne0d |
|- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> ( ( A x. A ) + ( B x. B ) ) =/= 0 ) |