Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( B = 0 -> ( _i x. B ) = ( _i x. 0 ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
2
|
mul01i |
|- ( _i x. 0 ) = 0 |
4 |
1 3
|
eqtrdi |
|- ( B = 0 -> ( _i x. B ) = 0 ) |
5 |
|
oveq12 |
|- ( ( A = 0 /\ ( _i x. B ) = 0 ) -> ( A + ( _i x. B ) ) = ( 0 + 0 ) ) |
6 |
4 5
|
sylan2 |
|- ( ( A = 0 /\ B = 0 ) -> ( A + ( _i x. B ) ) = ( 0 + 0 ) ) |
7 |
|
00id |
|- ( 0 + 0 ) = 0 |
8 |
6 7
|
eqtrdi |
|- ( ( A = 0 /\ B = 0 ) -> ( A + ( _i x. B ) ) = 0 ) |
9 |
8
|
necon3ai |
|- ( ( A + ( _i x. B ) ) =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
10 |
|
neorian |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
11 |
9 10
|
sylibr |
|- ( ( A + ( _i x. B ) ) =/= 0 -> ( A =/= 0 \/ B =/= 0 ) ) |
12 |
|
remulcl |
|- ( ( A e. RR /\ A e. RR ) -> ( A x. A ) e. RR ) |
13 |
12
|
anidms |
|- ( A e. RR -> ( A x. A ) e. RR ) |
14 |
|
remulcl |
|- ( ( B e. RR /\ B e. RR ) -> ( B x. B ) e. RR ) |
15 |
14
|
anidms |
|- ( B e. RR -> ( B x. B ) e. RR ) |
16 |
13 15
|
anim12i |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) ) |
17 |
|
msqgt0 |
|- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |
18 |
|
msqge0 |
|- ( B e. RR -> 0 <_ ( B x. B ) ) |
19 |
17 18
|
anim12i |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) |
20 |
19
|
an32s |
|- ( ( ( A e. RR /\ B e. RR ) /\ A =/= 0 ) -> ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) |
21 |
|
addgtge0 |
|- ( ( ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) /\ ( 0 < ( A x. A ) /\ 0 <_ ( B x. B ) ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
22 |
16 20 21
|
syl2an2r |
|- ( ( ( A e. RR /\ B e. RR ) /\ A =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
23 |
|
msqge0 |
|- ( A e. RR -> 0 <_ ( A x. A ) ) |
24 |
|
msqgt0 |
|- ( ( B e. RR /\ B =/= 0 ) -> 0 < ( B x. B ) ) |
25 |
23 24
|
anim12i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) |
26 |
25
|
anassrs |
|- ( ( ( A e. RR /\ B e. RR ) /\ B =/= 0 ) -> ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) |
27 |
|
addgegt0 |
|- ( ( ( ( A x. A ) e. RR /\ ( B x. B ) e. RR ) /\ ( 0 <_ ( A x. A ) /\ 0 < ( B x. B ) ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
28 |
16 26 27
|
syl2an2r |
|- ( ( ( A e. RR /\ B e. RR ) /\ B =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
29 |
22 28
|
jaodan |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
30 |
11 29
|
sylan2 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A + ( _i x. B ) ) =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
31 |
30
|
3impa |
|- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> 0 < ( ( A x. A ) + ( B x. B ) ) ) |
32 |
31
|
gt0ne0d |
|- ( ( A e. RR /\ B e. RR /\ ( A + ( _i x. B ) ) =/= 0 ) -> ( ( A x. A ) + ( B x. B ) ) =/= 0 ) |