Metamath Proof Explorer


Theorem recgt0

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 25-Aug-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion recgt0
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. RR /\ 0 < A ) -> A e. RR )
2 1 recnd
 |-  ( ( A e. RR /\ 0 < A ) -> A e. CC )
3 gt0ne0
 |-  ( ( A e. RR /\ 0 < A ) -> A =/= 0 )
4 2 3 recne0d
 |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) =/= 0 )
5 4 necomd
 |-  ( ( A e. RR /\ 0 < A ) -> 0 =/= ( 1 / A ) )
6 5 neneqd
 |-  ( ( A e. RR /\ 0 < A ) -> -. 0 = ( 1 / A ) )
7 0lt1
 |-  0 < 1
8 0re
 |-  0 e. RR
9 1re
 |-  1 e. RR
10 8 9 ltnsymi
 |-  ( 0 < 1 -> -. 1 < 0 )
11 7 10 ax-mp
 |-  -. 1 < 0
12 simpll
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A e. RR )
13 3 adantr
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A =/= 0 )
14 12 13 rereccld
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. RR )
15 14 renegcld
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> -u ( 1 / A ) e. RR )
16 simpr
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) < 0 )
17 1 3 rereccld
 |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR )
18 17 adantr
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. RR )
19 18 lt0neg1d
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) )
20 16 19 mpbid
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < -u ( 1 / A ) )
21 simplr
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < A )
22 15 12 20 21 mulgt0d
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < ( -u ( 1 / A ) x. A ) )
23 2 adantr
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A e. CC )
24 23 13 reccld
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. CC )
25 24 23 mulneg1d
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( -u ( 1 / A ) x. A ) = -u ( ( 1 / A ) x. A ) )
26 23 13 recid2d
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( ( 1 / A ) x. A ) = 1 )
27 26 negeqd
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> -u ( ( 1 / A ) x. A ) = -u 1 )
28 25 27 eqtrd
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( -u ( 1 / A ) x. A ) = -u 1 )
29 22 28 breqtrd
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < -u 1 )
30 1red
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 1 e. RR )
31 30 lt0neg1d
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 < 0 <-> 0 < -u 1 ) )
32 29 31 mpbird
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 1 < 0 )
33 32 ex
 |-  ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) < 0 -> 1 < 0 ) )
34 11 33 mtoi
 |-  ( ( A e. RR /\ 0 < A ) -> -. ( 1 / A ) < 0 )
35 ioran
 |-  ( -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) <-> ( -. 0 = ( 1 / A ) /\ -. ( 1 / A ) < 0 ) )
36 6 34 35 sylanbrc
 |-  ( ( A e. RR /\ 0 < A ) -> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) )
37 axlttri
 |-  ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) )
38 8 17 37 sylancr
 |-  ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) )
39 36 38 mpbird
 |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) )