Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. RR /\ 0 < A ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
3 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
4 |
2 3
|
recne0d |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) =/= 0 ) |
5 |
4
|
necomd |
|- ( ( A e. RR /\ 0 < A ) -> 0 =/= ( 1 / A ) ) |
6 |
5
|
neneqd |
|- ( ( A e. RR /\ 0 < A ) -> -. 0 = ( 1 / A ) ) |
7 |
|
0lt1 |
|- 0 < 1 |
8 |
|
0re |
|- 0 e. RR |
9 |
|
1re |
|- 1 e. RR |
10 |
8 9
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
11 |
7 10
|
ax-mp |
|- -. 1 < 0 |
12 |
|
simpll |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A e. RR ) |
13 |
3
|
adantr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A =/= 0 ) |
14 |
12 13
|
rereccld |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. RR ) |
15 |
14
|
renegcld |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> -u ( 1 / A ) e. RR ) |
16 |
|
simpr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) < 0 ) |
17 |
1 3
|
rereccld |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
18 |
17
|
adantr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. RR ) |
19 |
18
|
lt0neg1d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) ) |
20 |
16 19
|
mpbid |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < -u ( 1 / A ) ) |
21 |
|
simplr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < A ) |
22 |
15 12 20 21
|
mulgt0d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < ( -u ( 1 / A ) x. A ) ) |
23 |
2
|
adantr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A e. CC ) |
24 |
23 13
|
reccld |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. CC ) |
25 |
24 23
|
mulneg1d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( -u ( 1 / A ) x. A ) = -u ( ( 1 / A ) x. A ) ) |
26 |
23 13
|
recid2d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( ( 1 / A ) x. A ) = 1 ) |
27 |
26
|
negeqd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> -u ( ( 1 / A ) x. A ) = -u 1 ) |
28 |
25 27
|
eqtrd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( -u ( 1 / A ) x. A ) = -u 1 ) |
29 |
22 28
|
breqtrd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < -u 1 ) |
30 |
|
1red |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 1 e. RR ) |
31 |
30
|
lt0neg1d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 < 0 <-> 0 < -u 1 ) ) |
32 |
29 31
|
mpbird |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 1 < 0 ) |
33 |
32
|
ex |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) < 0 -> 1 < 0 ) ) |
34 |
11 33
|
mtoi |
|- ( ( A e. RR /\ 0 < A ) -> -. ( 1 / A ) < 0 ) |
35 |
|
ioran |
|- ( -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) <-> ( -. 0 = ( 1 / A ) /\ -. ( 1 / A ) < 0 ) ) |
36 |
6 34 35
|
sylanbrc |
|- ( ( A e. RR /\ 0 < A ) -> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) |
37 |
|
axlttri |
|- ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) ) |
38 |
8 17 37
|
sylancr |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) ) |
39 |
36 38
|
mpbird |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |