Metamath Proof Explorer


Theorem recgt0d

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1
|- ( ph -> A e. RR )
recgt0d.2
|- ( ph -> 0 < A )
Assertion recgt0d
|- ( ph -> 0 < ( 1 / A ) )

Proof

Step Hyp Ref Expression
1 ltp1d.1
 |-  ( ph -> A e. RR )
2 recgt0d.2
 |-  ( ph -> 0 < A )
3 recgt0
 |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) )
4 1 2 3 syl2anc
 |-  ( ph -> 0 < ( 1 / A ) )