Step |
Hyp |
Ref |
Expression |
1 |
|
ltplus1.1 |
|- A e. RR |
2 |
|
recgt0i.2 |
|- 0 < A |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
1
|
recni |
|- A e. CC |
5 |
|
ax-1ne0 |
|- 1 =/= 0 |
6 |
1 2
|
gt0ne0ii |
|- A =/= 0 |
7 |
3 4 5 6
|
divne0i |
|- ( 1 / A ) =/= 0 |
8 |
7
|
nesymi |
|- -. 0 = ( 1 / A ) |
9 |
|
0lt1 |
|- 0 < 1 |
10 |
|
0re |
|- 0 e. RR |
11 |
|
1re |
|- 1 e. RR |
12 |
10 11
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
13 |
9 12
|
ax-mp |
|- -. 1 < 0 |
14 |
1 6
|
rereccli |
|- ( 1 / A ) e. RR |
15 |
14
|
renegcli |
|- -u ( 1 / A ) e. RR |
16 |
15 1
|
mulgt0i |
|- ( ( 0 < -u ( 1 / A ) /\ 0 < A ) -> 0 < ( -u ( 1 / A ) x. A ) ) |
17 |
2 16
|
mpan2 |
|- ( 0 < -u ( 1 / A ) -> 0 < ( -u ( 1 / A ) x. A ) ) |
18 |
14
|
recni |
|- ( 1 / A ) e. CC |
19 |
18 4
|
mulneg1i |
|- ( -u ( 1 / A ) x. A ) = -u ( ( 1 / A ) x. A ) |
20 |
4 6
|
recidi |
|- ( A x. ( 1 / A ) ) = 1 |
21 |
4 18 20
|
mulcomli |
|- ( ( 1 / A ) x. A ) = 1 |
22 |
21
|
negeqi |
|- -u ( ( 1 / A ) x. A ) = -u 1 |
23 |
19 22
|
eqtri |
|- ( -u ( 1 / A ) x. A ) = -u 1 |
24 |
17 23
|
breqtrdi |
|- ( 0 < -u ( 1 / A ) -> 0 < -u 1 ) |
25 |
|
lt0neg1 |
|- ( ( 1 / A ) e. RR -> ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) ) |
26 |
14 25
|
ax-mp |
|- ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) |
27 |
|
lt0neg1 |
|- ( 1 e. RR -> ( 1 < 0 <-> 0 < -u 1 ) ) |
28 |
11 27
|
ax-mp |
|- ( 1 < 0 <-> 0 < -u 1 ) |
29 |
24 26 28
|
3imtr4i |
|- ( ( 1 / A ) < 0 -> 1 < 0 ) |
30 |
13 29
|
mto |
|- -. ( 1 / A ) < 0 |
31 |
8 30
|
pm3.2ni |
|- -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) |
32 |
|
axlttri |
|- ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) ) |
33 |
10 14 32
|
mp2an |
|- ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) |
34 |
31 33
|
mpbir |
|- 0 < ( 1 / A ) |