Metamath Proof Explorer


Theorem recl

Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion recl
|- ( A e. CC -> ( Re ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 reval
 |-  ( A e. CC -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) )
2 cjth
 |-  ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) )
3 2 simpld
 |-  ( A e. CC -> ( A + ( * ` A ) ) e. RR )
4 3 rehalfcld
 |-  ( A e. CC -> ( ( A + ( * ` A ) ) / 2 ) e. RR )
5 1 4 eqeltrd
 |-  ( A e. CC -> ( Re ` A ) e. RR )