Step |
Hyp |
Ref |
Expression |
1 |
|
reclempr.1 |
|- B = { x | E. y ( x |
2 |
|
df-1p |
|- 1P = { w | w |
3 |
2
|
abeq2i |
|- ( w e. 1P <-> w |
4 |
|
ltrnq |
|- ( w ( *Q ` 1Q ) |
5 |
|
mulcomnq |
|- ( ( *Q ` 1Q ) .Q 1Q ) = ( 1Q .Q ( *Q ` 1Q ) ) |
6 |
|
1nq |
|- 1Q e. Q. |
7 |
|
recclnq |
|- ( 1Q e. Q. -> ( *Q ` 1Q ) e. Q. ) |
8 |
|
mulidnq |
|- ( ( *Q ` 1Q ) e. Q. -> ( ( *Q ` 1Q ) .Q 1Q ) = ( *Q ` 1Q ) ) |
9 |
6 7 8
|
mp2b |
|- ( ( *Q ` 1Q ) .Q 1Q ) = ( *Q ` 1Q ) |
10 |
|
recidnq |
|- ( 1Q e. Q. -> ( 1Q .Q ( *Q ` 1Q ) ) = 1Q ) |
11 |
6 10
|
ax-mp |
|- ( 1Q .Q ( *Q ` 1Q ) ) = 1Q |
12 |
5 9 11
|
3eqtr3i |
|- ( *Q ` 1Q ) = 1Q |
13 |
12
|
breq1i |
|- ( ( *Q ` 1Q ) 1Q |
14 |
4 13
|
bitri |
|- ( w 1Q |
15 |
|
prlem936 |
|- ( ( A e. P. /\ 1Q E. v e. A -. ( v .Q ( *Q ` w ) ) e. A ) |
16 |
14 15
|
sylan2b |
|- ( ( A e. P. /\ w E. v e. A -. ( v .Q ( *Q ` w ) ) e. A ) |
17 |
|
prnmax |
|- ( ( A e. P. /\ v e. A ) -> E. z e. A v |
18 |
17
|
ad2ant2r |
|- ( ( ( A e. P. /\ w E. z e. A v |
19 |
|
elprnq |
|- ( ( A e. P. /\ v e. A ) -> v e. Q. ) |
20 |
19
|
ad2ant2r |
|- ( ( ( A e. P. /\ w v e. Q. ) |
21 |
20
|
3adant3 |
|- ( ( ( A e. P. /\ w v e. Q. ) |
22 |
|
simp1r |
|- ( ( ( A e. P. /\ w w |
23 |
|
ltrelnq |
|- |
24 |
23
|
brel |
|- ( w ( w e. Q. /\ 1Q e. Q. ) ) |
25 |
24
|
simpld |
|- ( w w e. Q. ) |
26 |
22 25
|
syl |
|- ( ( ( A e. P. /\ w w e. Q. ) |
27 |
|
simp3 |
|- ( ( ( A e. P. /\ w v |
28 |
|
simp2r |
|- ( ( ( A e. P. /\ w -. ( v .Q ( *Q ` w ) ) e. A ) |
29 |
|
ltrnq |
|- ( v ( *Q ` z ) |
30 |
|
fvex |
|- ( *Q ` z ) e. _V |
31 |
|
fvex |
|- ( *Q ` v ) e. _V |
32 |
|
ltmnq |
|- ( u e. Q. -> ( x ( u .Q x ) |
33 |
|
vex |
|- w e. _V |
34 |
|
mulcomnq |
|- ( x .Q y ) = ( y .Q x ) |
35 |
30 31 32 33 34
|
caovord2 |
|- ( w e. Q. -> ( ( *Q ` z ) ( ( *Q ` z ) .Q w ) |
36 |
29 35
|
syl5bb |
|- ( w e. Q. -> ( v ( ( *Q ` z ) .Q w ) |
37 |
36
|
adantl |
|- ( ( v e. Q. /\ w e. Q. ) -> ( v ( ( *Q ` z ) .Q w ) |
38 |
37
|
biimpd |
|- ( ( v e. Q. /\ w e. Q. ) -> ( v ( ( *Q ` z ) .Q w ) |
39 |
|
mulcomnq |
|- ( v .Q ( *Q ` v ) ) = ( ( *Q ` v ) .Q v ) |
40 |
|
recidnq |
|- ( v e. Q. -> ( v .Q ( *Q ` v ) ) = 1Q ) |
41 |
39 40
|
eqtr3id |
|- ( v e. Q. -> ( ( *Q ` v ) .Q v ) = 1Q ) |
42 |
|
recidnq |
|- ( w e. Q. -> ( w .Q ( *Q ` w ) ) = 1Q ) |
43 |
41 42
|
oveqan12d |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( ( *Q ` v ) .Q v ) .Q ( w .Q ( *Q ` w ) ) ) = ( 1Q .Q 1Q ) ) |
44 |
|
vex |
|- v e. _V |
45 |
|
mulassnq |
|- ( ( x .Q y ) .Q u ) = ( x .Q ( y .Q u ) ) |
46 |
|
fvex |
|- ( *Q ` w ) e. _V |
47 |
31 44 33 34 45 46
|
caov4 |
|- ( ( ( *Q ` v ) .Q v ) .Q ( w .Q ( *Q ` w ) ) ) = ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) |
48 |
|
mulidnq |
|- ( 1Q e. Q. -> ( 1Q .Q 1Q ) = 1Q ) |
49 |
6 48
|
ax-mp |
|- ( 1Q .Q 1Q ) = 1Q |
50 |
43 47 49
|
3eqtr3g |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) |
51 |
|
recclnq |
|- ( v e. Q. -> ( *Q ` v ) e. Q. ) |
52 |
|
mulclnq |
|- ( ( ( *Q ` v ) e. Q. /\ w e. Q. ) -> ( ( *Q ` v ) .Q w ) e. Q. ) |
53 |
51 52
|
sylan |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` v ) .Q w ) e. Q. ) |
54 |
|
recmulnq |
|- ( ( ( *Q ` v ) .Q w ) e. Q. -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) <-> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) ) |
55 |
53 54
|
syl |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) <-> ( ( ( *Q ` v ) .Q w ) .Q ( v .Q ( *Q ` w ) ) ) = 1Q ) ) |
56 |
50 55
|
mpbird |
|- ( ( v e. Q. /\ w e. Q. ) -> ( *Q ` ( ( *Q ` v ) .Q w ) ) = ( v .Q ( *Q ` w ) ) ) |
57 |
56
|
eleq1d |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A <-> ( v .Q ( *Q ` w ) ) e. A ) ) |
58 |
57
|
notbid |
|- ( ( v e. Q. /\ w e. Q. ) -> ( -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A <-> -. ( v .Q ( *Q ` w ) ) e. A ) ) |
59 |
58
|
biimprd |
|- ( ( v e. Q. /\ w e. Q. ) -> ( -. ( v .Q ( *Q ` w ) ) e. A -> -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) |
60 |
38 59
|
anim12d |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( v ( ( ( *Q ` z ) .Q w ) |
61 |
|
ovex |
|- ( ( *Q ` v ) .Q w ) e. _V |
62 |
|
breq2 |
|- ( y = ( ( *Q ` v ) .Q w ) -> ( ( ( *Q ` z ) .Q w ) ( ( *Q ` z ) .Q w ) |
63 |
|
fveq2 |
|- ( y = ( ( *Q ` v ) .Q w ) -> ( *Q ` y ) = ( *Q ` ( ( *Q ` v ) .Q w ) ) ) |
64 |
63
|
eleq1d |
|- ( y = ( ( *Q ` v ) .Q w ) -> ( ( *Q ` y ) e. A <-> ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) |
65 |
64
|
notbid |
|- ( y = ( ( *Q ` v ) .Q w ) -> ( -. ( *Q ` y ) e. A <-> -. ( *Q ` ( ( *Q ` v ) .Q w ) ) e. A ) ) |
66 |
62 65
|
anbi12d |
|- ( y = ( ( *Q ` v ) .Q w ) -> ( ( ( ( *Q ` z ) .Q w ) ( ( ( *Q ` z ) .Q w ) |
67 |
61 66
|
spcev |
|- ( ( ( ( *Q ` z ) .Q w ) E. y ( ( ( *Q ` z ) .Q w ) |
68 |
|
ovex |
|- ( ( *Q ` z ) .Q w ) e. _V |
69 |
|
breq1 |
|- ( x = ( ( *Q ` z ) .Q w ) -> ( x ( ( *Q ` z ) .Q w ) |
70 |
69
|
anbi1d |
|- ( x = ( ( *Q ` z ) .Q w ) -> ( ( x ( ( ( *Q ` z ) .Q w ) |
71 |
70
|
exbidv |
|- ( x = ( ( *Q ` z ) .Q w ) -> ( E. y ( x E. y ( ( ( *Q ` z ) .Q w ) |
72 |
68 71 1
|
elab2 |
|- ( ( ( *Q ` z ) .Q w ) e. B <-> E. y ( ( ( *Q ` z ) .Q w ) |
73 |
67 72
|
sylibr |
|- ( ( ( ( *Q ` z ) .Q w ) ( ( *Q ` z ) .Q w ) e. B ) |
74 |
60 73
|
syl6 |
|- ( ( v e. Q. /\ w e. Q. ) -> ( ( v ( ( *Q ` z ) .Q w ) e. B ) ) |
75 |
74
|
imp |
|- ( ( ( v e. Q. /\ w e. Q. ) /\ ( v ( ( *Q ` z ) .Q w ) e. B ) |
76 |
21 26 27 28 75
|
syl22anc |
|- ( ( ( A e. P. /\ w ( ( *Q ` z ) .Q w ) e. B ) |
77 |
23
|
brel |
|- ( v ( v e. Q. /\ z e. Q. ) ) |
78 |
77
|
simprd |
|- ( v z e. Q. ) |
79 |
78
|
3ad2ant3 |
|- ( ( ( A e. P. /\ w z e. Q. ) |
80 |
|
mulidnq |
|- ( w e. Q. -> ( w .Q 1Q ) = w ) |
81 |
|
mulcomnq |
|- ( w .Q 1Q ) = ( 1Q .Q w ) |
82 |
80 81
|
eqtr3di |
|- ( w e. Q. -> w = ( 1Q .Q w ) ) |
83 |
|
recidnq |
|- ( z e. Q. -> ( z .Q ( *Q ` z ) ) = 1Q ) |
84 |
83
|
oveq1d |
|- ( z e. Q. -> ( ( z .Q ( *Q ` z ) ) .Q w ) = ( 1Q .Q w ) ) |
85 |
|
mulassnq |
|- ( ( z .Q ( *Q ` z ) ) .Q w ) = ( z .Q ( ( *Q ` z ) .Q w ) ) |
86 |
84 85
|
eqtr3di |
|- ( z e. Q. -> ( 1Q .Q w ) = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
87 |
82 86
|
sylan9eqr |
|- ( ( z e. Q. /\ w e. Q. ) -> w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
88 |
79 26 87
|
syl2anc |
|- ( ( ( A e. P. /\ w w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
89 |
|
oveq2 |
|- ( x = ( ( *Q ` z ) .Q w ) -> ( z .Q x ) = ( z .Q ( ( *Q ` z ) .Q w ) ) ) |
90 |
89
|
rspceeqv |
|- ( ( ( ( *Q ` z ) .Q w ) e. B /\ w = ( z .Q ( ( *Q ` z ) .Q w ) ) ) -> E. x e. B w = ( z .Q x ) ) |
91 |
76 88 90
|
syl2anc |
|- ( ( ( A e. P. /\ w E. x e. B w = ( z .Q x ) ) |
92 |
91
|
3expia |
|- ( ( ( A e. P. /\ w ( v E. x e. B w = ( z .Q x ) ) ) |
93 |
92
|
reximdv |
|- ( ( ( A e. P. /\ w ( E. z e. A v E. z e. A E. x e. B w = ( z .Q x ) ) ) |
94 |
1
|
reclem2pr |
|- ( A e. P. -> B e. P. ) |
95 |
|
df-mp |
|- .P. = ( y e. P. , w e. P. |-> { u | E. f e. y E. g e. w u = ( f .Q g ) } ) |
96 |
|
mulclnq |
|- ( ( f e. Q. /\ g e. Q. ) -> ( f .Q g ) e. Q. ) |
97 |
95 96
|
genpelv |
|- ( ( A e. P. /\ B e. P. ) -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
98 |
94 97
|
mpdan |
|- ( A e. P. -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
99 |
98
|
ad2antrr |
|- ( ( ( A e. P. /\ w ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
100 |
93 99
|
sylibrd |
|- ( ( ( A e. P. /\ w ( E. z e. A v w e. ( A .P. B ) ) ) |
101 |
18 100
|
mpd |
|- ( ( ( A e. P. /\ w w e. ( A .P. B ) ) |
102 |
16 101
|
rexlimddv |
|- ( ( A e. P. /\ w w e. ( A .P. B ) ) |
103 |
102
|
ex |
|- ( A e. P. -> ( w w e. ( A .P. B ) ) ) |
104 |
3 103
|
syl5bi |
|- ( A e. P. -> ( w e. 1P -> w e. ( A .P. B ) ) ) |
105 |
104
|
ssrdv |
|- ( A e. P. -> 1P C_ ( A .P. B ) ) |