Step |
Hyp |
Ref |
Expression |
1 |
|
reclt0.1 |
|- ( ph -> A e. RR ) |
2 |
|
reclt0.2 |
|- ( ph -> A =/= 0 ) |
3 |
1
|
adantr |
|- ( ( ph /\ A < 0 ) -> A e. RR ) |
4 |
|
simpr |
|- ( ( ph /\ A < 0 ) -> A < 0 ) |
5 |
3 4
|
reclt0d |
|- ( ( ph /\ A < 0 ) -> ( 1 / A ) < 0 ) |
6 |
5
|
ex |
|- ( ph -> ( A < 0 -> ( 1 / A ) < 0 ) ) |
7 |
|
0red |
|- ( ( ph /\ -. A < 0 ) -> 0 e. RR ) |
8 |
1
|
adantr |
|- ( ( ph /\ -. A < 0 ) -> A e. RR ) |
9 |
2
|
necomd |
|- ( ph -> 0 =/= A ) |
10 |
9
|
adantr |
|- ( ( ph /\ -. A < 0 ) -> 0 =/= A ) |
11 |
|
simpr |
|- ( ( ph /\ -. A < 0 ) -> -. A < 0 ) |
12 |
7 8 10 11
|
lttri5d |
|- ( ( ph /\ -. A < 0 ) -> 0 < A ) |
13 |
|
0red |
|- ( ( ph /\ 0 < A ) -> 0 e. RR ) |
14 |
1 2
|
rereccld |
|- ( ph -> ( 1 / A ) e. RR ) |
15 |
14
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( 1 / A ) e. RR ) |
16 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. RR ) |
17 |
|
simpr |
|- ( ( ph /\ 0 < A ) -> 0 < A ) |
18 |
16 17
|
recgt0d |
|- ( ( ph /\ 0 < A ) -> 0 < ( 1 / A ) ) |
19 |
13 15 18
|
ltled |
|- ( ( ph /\ 0 < A ) -> 0 <_ ( 1 / A ) ) |
20 |
13 15
|
lenltd |
|- ( ( ph /\ 0 < A ) -> ( 0 <_ ( 1 / A ) <-> -. ( 1 / A ) < 0 ) ) |
21 |
19 20
|
mpbid |
|- ( ( ph /\ 0 < A ) -> -. ( 1 / A ) < 0 ) |
22 |
12 21
|
syldan |
|- ( ( ph /\ -. A < 0 ) -> -. ( 1 / A ) < 0 ) |
23 |
22
|
ex |
|- ( ph -> ( -. A < 0 -> -. ( 1 / A ) < 0 ) ) |
24 |
23
|
con4d |
|- ( ph -> ( ( 1 / A ) < 0 -> A < 0 ) ) |
25 |
24
|
imp |
|- ( ( ph /\ ( 1 / A ) < 0 ) -> A < 0 ) |
26 |
25
|
ex |
|- ( ph -> ( ( 1 / A ) < 0 -> A < 0 ) ) |
27 |
6 26
|
impbid |
|- ( ph -> ( A < 0 <-> ( 1 / A ) < 0 ) ) |