Metamath Proof Explorer


Theorem reclt0

Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses reclt0.1
|- ( ph -> A e. RR )
reclt0.2
|- ( ph -> A =/= 0 )
Assertion reclt0
|- ( ph -> ( A < 0 <-> ( 1 / A ) < 0 ) )

Proof

Step Hyp Ref Expression
1 reclt0.1
 |-  ( ph -> A e. RR )
2 reclt0.2
 |-  ( ph -> A =/= 0 )
3 1 adantr
 |-  ( ( ph /\ A < 0 ) -> A e. RR )
4 simpr
 |-  ( ( ph /\ A < 0 ) -> A < 0 )
5 3 4 reclt0d
 |-  ( ( ph /\ A < 0 ) -> ( 1 / A ) < 0 )
6 5 ex
 |-  ( ph -> ( A < 0 -> ( 1 / A ) < 0 ) )
7 0red
 |-  ( ( ph /\ -. A < 0 ) -> 0 e. RR )
8 1 adantr
 |-  ( ( ph /\ -. A < 0 ) -> A e. RR )
9 2 necomd
 |-  ( ph -> 0 =/= A )
10 9 adantr
 |-  ( ( ph /\ -. A < 0 ) -> 0 =/= A )
11 simpr
 |-  ( ( ph /\ -. A < 0 ) -> -. A < 0 )
12 7 8 10 11 lttri5d
 |-  ( ( ph /\ -. A < 0 ) -> 0 < A )
13 0red
 |-  ( ( ph /\ 0 < A ) -> 0 e. RR )
14 1 2 rereccld
 |-  ( ph -> ( 1 / A ) e. RR )
15 14 adantr
 |-  ( ( ph /\ 0 < A ) -> ( 1 / A ) e. RR )
16 1 adantr
 |-  ( ( ph /\ 0 < A ) -> A e. RR )
17 simpr
 |-  ( ( ph /\ 0 < A ) -> 0 < A )
18 16 17 recgt0d
 |-  ( ( ph /\ 0 < A ) -> 0 < ( 1 / A ) )
19 13 15 18 ltled
 |-  ( ( ph /\ 0 < A ) -> 0 <_ ( 1 / A ) )
20 13 15 lenltd
 |-  ( ( ph /\ 0 < A ) -> ( 0 <_ ( 1 / A ) <-> -. ( 1 / A ) < 0 ) )
21 19 20 mpbid
 |-  ( ( ph /\ 0 < A ) -> -. ( 1 / A ) < 0 )
22 12 21 syldan
 |-  ( ( ph /\ -. A < 0 ) -> -. ( 1 / A ) < 0 )
23 22 ex
 |-  ( ph -> ( -. A < 0 -> -. ( 1 / A ) < 0 ) )
24 23 con4d
 |-  ( ph -> ( ( 1 / A ) < 0 -> A < 0 ) )
25 24 imp
 |-  ( ( ph /\ ( 1 / A ) < 0 ) -> A < 0 )
26 25 ex
 |-  ( ph -> ( ( 1 / A ) < 0 -> A < 0 ) )
27 6 26 impbid
 |-  ( ph -> ( A < 0 <-> ( 1 / A ) < 0 ) )