| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 2 | 1 | recld2 |  |-  RR e. ( Clsd ` ( TopOpen ` CCfld ) ) | 
						
							| 3 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 4 | 3 | cncmet |  |-  ( abs o. - ) e. ( CMet ` CC ) | 
						
							| 5 | 1 | cnfldtopn |  |-  ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) | 
						
							| 6 | 5 | cmetss |  |-  ( ( abs o. - ) e. ( CMet ` CC ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) | 
						
							| 7 | 4 6 | ax-mp |  |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) | 
						
							| 8 | 2 7 | mpbir |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) |