| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 2 |
1
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 3 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 4 |
3
|
cncmet |
|- ( abs o. - ) e. ( CMet ` CC ) |
| 5 |
1
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 6 |
5
|
cmetss |
|- ( ( abs o. - ) e. ( CMet ` CC ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
| 7 |
4 6
|
ax-mp |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 8 |
2 7
|
mpbir |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) |