| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ref |
|- Re : CC --> RR |
| 2 |
|
ax-resscn |
|- RR C_ CC |
| 3 |
|
fss |
|- ( ( Re : CC --> RR /\ RR C_ CC ) -> Re : CC --> CC ) |
| 4 |
1 2 3
|
mp2an |
|- Re : CC --> CC |
| 5 |
|
resub |
|- ( ( z e. CC /\ A e. CC ) -> ( Re ` ( z - A ) ) = ( ( Re ` z ) - ( Re ` A ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( Re ` ( z - A ) ) ) = ( abs ` ( ( Re ` z ) - ( Re ` A ) ) ) ) |
| 7 |
|
subcl |
|- ( ( z e. CC /\ A e. CC ) -> ( z - A ) e. CC ) |
| 8 |
|
absrele |
|- ( ( z - A ) e. CC -> ( abs ` ( Re ` ( z - A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( Re ` ( z - A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 10 |
6 9
|
eqbrtrrd |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( Re ` z ) - ( Re ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 11 |
4 10
|
cn1lem |
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( Re ` z ) - ( Re ` A ) ) ) < x ) ) |