Description: Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | recncf | |- Re e. ( CC -cn-> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ref | |- Re : CC --> RR |
|
2 | recn2 | |- ( ( x e. CC /\ y e. RR+ ) -> E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( Re ` w ) - ( Re ` x ) ) ) < y ) ) |
|
3 | 2 | rgen2 | |- A. x e. CC A. y e. RR+ E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( Re ` w ) - ( Re ` x ) ) ) < y ) |
4 | ssid | |- CC C_ CC |
|
5 | ax-resscn | |- RR C_ CC |
|
6 | elcncf2 | |- ( ( CC C_ CC /\ RR C_ CC ) -> ( Re e. ( CC -cn-> RR ) <-> ( Re : CC --> RR /\ A. x e. CC A. y e. RR+ E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( Re ` w ) - ( Re ` x ) ) ) < y ) ) ) ) |
|
7 | 4 5 6 | mp2an | |- ( Re e. ( CC -cn-> RR ) <-> ( Re : CC --> RR /\ A. x e. CC A. y e. RR+ E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( Re ` w ) - ( Re ` x ) ) ) < y ) ) ) |
8 | 1 3 7 | mpbir2an | |- Re e. ( CC -cn-> RR ) |