| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recnperf.k |
|- K = ( TopOpen ` CCfld ) |
| 2 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
| 3 |
|
oveq2 |
|- ( S = RR -> ( K |`t S ) = ( K |`t RR ) ) |
| 4 |
1
|
reperf |
|- ( K |`t RR ) e. Perf |
| 5 |
3 4
|
eqeltrdi |
|- ( S = RR -> ( K |`t S ) e. Perf ) |
| 6 |
|
oveq2 |
|- ( S = CC -> ( K |`t S ) = ( K |`t CC ) ) |
| 7 |
1
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
| 8 |
7
|
toponunii |
|- CC = U. K |
| 9 |
8
|
restid |
|- ( K e. ( TopOn ` CC ) -> ( K |`t CC ) = K ) |
| 10 |
7 9
|
ax-mp |
|- ( K |`t CC ) = K |
| 11 |
1
|
cnperf |
|- K e. Perf |
| 12 |
10 11
|
eqeltri |
|- ( K |`t CC ) e. Perf |
| 13 |
6 12
|
eqeltrdi |
|- ( S = CC -> ( K |`t S ) e. Perf ) |
| 14 |
5 13
|
jaoi |
|- ( ( S = RR \/ S = CC ) -> ( K |`t S ) e. Perf ) |
| 15 |
2 14
|
syl |
|- ( S e. { RR , CC } -> ( K |`t S ) e. Perf ) |