Description: Both RR and CC are subsets of CC . (Contributed by Mario Carneiro, 10-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
2 | ax-resscn | |- RR C_ CC |
|
3 | sseq1 | |- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
|
4 | 2 3 | mpbiri | |- ( S = RR -> S C_ CC ) |
5 | eqimss | |- ( S = CC -> S C_ CC ) |
|
6 | 4 5 | jaoi | |- ( ( S = RR \/ S = CC ) -> S C_ CC ) |
7 | 1 6 | syl | |- ( S e. { RR , CC } -> S C_ CC ) |