Description: Both RR and CC are subsets of CC . (Contributed by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 2 | ax-resscn | |- RR C_ CC |
|
| 3 | sseq1 | |- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
|
| 4 | 2 3 | mpbiri | |- ( S = RR -> S C_ CC ) |
| 5 | eqimss | |- ( S = CC -> S C_ CC ) |
|
| 6 | 4 5 | jaoi | |- ( ( S = RR \/ S = CC ) -> S C_ CC ) |
| 7 | 1 6 | syl | |- ( S e. { RR , CC } -> S C_ CC ) |