Metamath Proof Explorer


Theorem recnprss

Description: Both RR and CC are subsets of CC . (Contributed by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion recnprss
|- ( S e. { RR , CC } -> S C_ CC )

Proof

Step Hyp Ref Expression
1 elpri
 |-  ( S e. { RR , CC } -> ( S = RR \/ S = CC ) )
2 ax-resscn
 |-  RR C_ CC
3 sseq1
 |-  ( S = RR -> ( S C_ CC <-> RR C_ CC ) )
4 2 3 mpbiri
 |-  ( S = RR -> S C_ CC )
5 eqimss
 |-  ( S = CC -> S C_ CC )
6 4 5 jaoi
 |-  ( ( S = RR \/ S = CC ) -> S C_ CC )
7 1 6 syl
 |-  ( S e. { RR , CC } -> S C_ CC )