Step |
Hyp |
Ref |
Expression |
1 |
|
recgt1i |
|- ( ( A e. RR /\ 1 < A ) -> ( 0 < ( 1 / A ) /\ ( 1 / A ) < 1 ) ) |
2 |
1
|
simprd |
|- ( ( A e. RR /\ 1 < A ) -> ( 1 / A ) < 1 ) |
3 |
1
|
simpld |
|- ( ( A e. RR /\ 1 < A ) -> 0 < ( 1 / A ) ) |
4 |
|
zgt0ge1 |
|- ( ( 1 / A ) e. ZZ -> ( 0 < ( 1 / A ) <-> 1 <_ ( 1 / A ) ) ) |
5 |
3 4
|
syl5ibcom |
|- ( ( A e. RR /\ 1 < A ) -> ( ( 1 / A ) e. ZZ -> 1 <_ ( 1 / A ) ) ) |
6 |
|
1re |
|- 1 e. RR |
7 |
|
0lt1 |
|- 0 < 1 |
8 |
|
0re |
|- 0 e. RR |
9 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
10 |
8 6 9
|
mp3an12 |
|- ( A e. RR -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
11 |
7 10
|
mpani |
|- ( A e. RR -> ( 1 < A -> 0 < A ) ) |
12 |
11
|
imdistani |
|- ( ( A e. RR /\ 1 < A ) -> ( A e. RR /\ 0 < A ) ) |
13 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
14 |
12 13
|
syl |
|- ( ( A e. RR /\ 1 < A ) -> A =/= 0 ) |
15 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
16 |
14 15
|
syldan |
|- ( ( A e. RR /\ 1 < A ) -> ( 1 / A ) e. RR ) |
17 |
|
lenlt |
|- ( ( 1 e. RR /\ ( 1 / A ) e. RR ) -> ( 1 <_ ( 1 / A ) <-> -. ( 1 / A ) < 1 ) ) |
18 |
6 16 17
|
sylancr |
|- ( ( A e. RR /\ 1 < A ) -> ( 1 <_ ( 1 / A ) <-> -. ( 1 / A ) < 1 ) ) |
19 |
5 18
|
sylibd |
|- ( ( A e. RR /\ 1 < A ) -> ( ( 1 / A ) e. ZZ -> -. ( 1 / A ) < 1 ) ) |
20 |
2 19
|
mt2d |
|- ( ( A e. RR /\ 1 < A ) -> -. ( 1 / A ) e. ZZ ) |