Step |
Hyp |
Ref |
Expression |
1 |
|
cosf |
|- cos : CC --> CC |
2 |
|
ffn |
|- ( cos : CC --> CC -> cos Fn CC ) |
3 |
1 2
|
ax-mp |
|- cos Fn CC |
4 |
|
0re |
|- 0 e. RR |
5 |
|
pire |
|- _pi e. RR |
6 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
7 |
4 5 6
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
8 |
|
ax-resscn |
|- RR C_ CC |
9 |
7 8
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
10 |
|
fnssres |
|- ( ( cos Fn CC /\ ( 0 [,] _pi ) C_ CC ) -> ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) ) |
11 |
3 9 10
|
mp2an |
|- ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) |
12 |
|
fvres |
|- ( x e. ( 0 [,] _pi ) -> ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( cos ` x ) ) |
13 |
7
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. RR ) |
14 |
|
cosbnd2 |
|- ( x e. RR -> ( cos ` x ) e. ( -u 1 [,] 1 ) ) |
15 |
13 14
|
syl |
|- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. ( -u 1 [,] 1 ) ) |
16 |
12 15
|
eqeltrd |
|- ( x e. ( 0 [,] _pi ) -> ( ( cos |` ( 0 [,] _pi ) ) ` x ) e. ( -u 1 [,] 1 ) ) |
17 |
16
|
rgen |
|- A. x e. ( 0 [,] _pi ) ( ( cos |` ( 0 [,] _pi ) ) ` x ) e. ( -u 1 [,] 1 ) |
18 |
|
ffnfv |
|- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) /\ A. x e. ( 0 [,] _pi ) ( ( cos |` ( 0 [,] _pi ) ) ` x ) e. ( -u 1 [,] 1 ) ) ) |
19 |
11 17 18
|
mpbir2an |
|- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) |
20 |
|
fvres |
|- ( y e. ( 0 [,] _pi ) -> ( ( cos |` ( 0 [,] _pi ) ) ` y ) = ( cos ` y ) ) |
21 |
12 20
|
eqeqan12d |
|- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> ( cos ` x ) = ( cos ` y ) ) ) |
22 |
|
cos11 |
|- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( x = y <-> ( cos ` x ) = ( cos ` y ) ) ) |
23 |
22
|
biimprd |
|- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( ( cos ` x ) = ( cos ` y ) -> x = y ) ) |
24 |
21 23
|
sylbid |
|- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) -> x = y ) ) |
25 |
24
|
rgen2 |
|- A. x e. ( 0 [,] _pi ) A. y e. ( 0 [,] _pi ) ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) -> x = y ) |
26 |
|
dff13 |
|- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) /\ A. x e. ( 0 [,] _pi ) A. y e. ( 0 [,] _pi ) ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) -> x = y ) ) ) |
27 |
19 25 26
|
mpbir2an |
|- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-> ( -u 1 [,] 1 ) |
28 |
4
|
a1i |
|- ( x e. ( -u 1 [,] 1 ) -> 0 e. RR ) |
29 |
5
|
a1i |
|- ( x e. ( -u 1 [,] 1 ) -> _pi e. RR ) |
30 |
|
neg1rr |
|- -u 1 e. RR |
31 |
|
1re |
|- 1 e. RR |
32 |
30 31
|
elicc2i |
|- ( x e. ( -u 1 [,] 1 ) <-> ( x e. RR /\ -u 1 <_ x /\ x <_ 1 ) ) |
33 |
32
|
simp1bi |
|- ( x e. ( -u 1 [,] 1 ) -> x e. RR ) |
34 |
|
pipos |
|- 0 < _pi |
35 |
34
|
a1i |
|- ( x e. ( -u 1 [,] 1 ) -> 0 < _pi ) |
36 |
9
|
a1i |
|- ( x e. ( -u 1 [,] 1 ) -> ( 0 [,] _pi ) C_ CC ) |
37 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
38 |
37
|
a1i |
|- ( x e. ( -u 1 [,] 1 ) -> cos e. ( CC -cn-> CC ) ) |
39 |
7
|
sseli |
|- ( z e. ( 0 [,] _pi ) -> z e. RR ) |
40 |
39
|
recoscld |
|- ( z e. ( 0 [,] _pi ) -> ( cos ` z ) e. RR ) |
41 |
40
|
adantl |
|- ( ( x e. ( -u 1 [,] 1 ) /\ z e. ( 0 [,] _pi ) ) -> ( cos ` z ) e. RR ) |
42 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
43 |
32
|
simp2bi |
|- ( x e. ( -u 1 [,] 1 ) -> -u 1 <_ x ) |
44 |
42 43
|
eqbrtrid |
|- ( x e. ( -u 1 [,] 1 ) -> ( cos ` _pi ) <_ x ) |
45 |
32
|
simp3bi |
|- ( x e. ( -u 1 [,] 1 ) -> x <_ 1 ) |
46 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
47 |
45 46
|
breqtrrdi |
|- ( x e. ( -u 1 [,] 1 ) -> x <_ ( cos ` 0 ) ) |
48 |
44 47
|
jca |
|- ( x e. ( -u 1 [,] 1 ) -> ( ( cos ` _pi ) <_ x /\ x <_ ( cos ` 0 ) ) ) |
49 |
28 29 33 35 36 38 41 48
|
ivthle2 |
|- ( x e. ( -u 1 [,] 1 ) -> E. y e. ( 0 [,] _pi ) ( cos ` y ) = x ) |
50 |
|
eqcom |
|- ( x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> ( ( cos |` ( 0 [,] _pi ) ) ` y ) = x ) |
51 |
20
|
eqeq1d |
|- ( y e. ( 0 [,] _pi ) -> ( ( ( cos |` ( 0 [,] _pi ) ) ` y ) = x <-> ( cos ` y ) = x ) ) |
52 |
50 51
|
syl5bb |
|- ( y e. ( 0 [,] _pi ) -> ( x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> ( cos ` y ) = x ) ) |
53 |
52
|
rexbiia |
|- ( E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> E. y e. ( 0 [,] _pi ) ( cos ` y ) = x ) |
54 |
49 53
|
sylibr |
|- ( x e. ( -u 1 [,] 1 ) -> E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) ) |
55 |
54
|
rgen |
|- A. x e. ( -u 1 [,] 1 ) E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) |
56 |
|
dffo3 |
|- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -onto-> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) /\ A. x e. ( -u 1 [,] 1 ) E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) ) ) |
57 |
19 55 56
|
mpbir2an |
|- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -onto-> ( -u 1 [,] 1 ) |
58 |
|
df-f1o |
|- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-> ( -u 1 [,] 1 ) /\ ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -onto-> ( -u 1 [,] 1 ) ) ) |
59 |
27 57 58
|
mpbir2an |
|- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) |