| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recid2 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 ) |
| 2 |
|
1cnd |
|- ( ( A e. CC /\ A =/= 0 ) -> 1 e. CC ) |
| 3 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
| 4 |
|
reccl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
| 5 |
|
recne0 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) =/= 0 ) |
| 6 |
|
divmul |
|- ( ( 1 e. CC /\ A e. CC /\ ( ( 1 / A ) e. CC /\ ( 1 / A ) =/= 0 ) ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) ) |
| 7 |
2 3 4 5 6
|
syl112anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) ) |
| 8 |
1 7
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |