Metamath Proof Explorer


Theorem recrec

Description: A number is equal to the reciprocal of its reciprocal. Theorem I.10 of Apostol p. 18. (Contributed by NM, 26-Sep-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion recrec
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A )

Proof

Step Hyp Ref Expression
1 recid2
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 )
2 1cnd
 |-  ( ( A e. CC /\ A =/= 0 ) -> 1 e. CC )
3 simpl
 |-  ( ( A e. CC /\ A =/= 0 ) -> A e. CC )
4 reccl
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC )
5 recne0
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) =/= 0 )
6 divmul
 |-  ( ( 1 e. CC /\ A e. CC /\ ( ( 1 / A ) e. CC /\ ( 1 / A ) =/= 0 ) ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) )
7 2 3 4 5 6 syl112anc
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) )
8 1 7 mpbird
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A )