| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2fveq3 |  |-  ( x = A -> ( *Q ` ( *Q ` x ) ) = ( *Q ` ( *Q ` A ) ) ) | 
						
							| 2 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( x = A -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( *Q ` ( *Q ` A ) ) = A ) ) | 
						
							| 4 |  | mulcomnq |  |-  ( ( *Q ` x ) .Q x ) = ( x .Q ( *Q ` x ) ) | 
						
							| 5 |  | recidnq |  |-  ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) | 
						
							| 6 | 4 5 | eqtrid |  |-  ( x e. Q. -> ( ( *Q ` x ) .Q x ) = 1Q ) | 
						
							| 7 |  | recclnq |  |-  ( x e. Q. -> ( *Q ` x ) e. Q. ) | 
						
							| 8 |  | recmulnq |  |-  ( ( *Q ` x ) e. Q. -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( ( *Q ` x ) .Q x ) = 1Q ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( x e. Q. -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( ( *Q ` x ) .Q x ) = 1Q ) ) | 
						
							| 10 | 6 9 | mpbird |  |-  ( x e. Q. -> ( *Q ` ( *Q ` x ) ) = x ) | 
						
							| 11 | 3 10 | vtoclga |  |-  ( A e. Q. -> ( *Q ` ( *Q ` A ) ) = A ) |