Step |
Hyp |
Ref |
Expression |
1 |
|
2fveq3 |
|- ( x = A -> ( *Q ` ( *Q ` x ) ) = ( *Q ` ( *Q ` A ) ) ) |
2 |
|
id |
|- ( x = A -> x = A ) |
3 |
1 2
|
eqeq12d |
|- ( x = A -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( *Q ` ( *Q ` A ) ) = A ) ) |
4 |
|
mulcomnq |
|- ( ( *Q ` x ) .Q x ) = ( x .Q ( *Q ` x ) ) |
5 |
|
recidnq |
|- ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) |
6 |
4 5
|
eqtrid |
|- ( x e. Q. -> ( ( *Q ` x ) .Q x ) = 1Q ) |
7 |
|
recclnq |
|- ( x e. Q. -> ( *Q ` x ) e. Q. ) |
8 |
|
recmulnq |
|- ( ( *Q ` x ) e. Q. -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( ( *Q ` x ) .Q x ) = 1Q ) ) |
9 |
7 8
|
syl |
|- ( x e. Q. -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( ( *Q ` x ) .Q x ) = 1Q ) ) |
10 |
6 9
|
mpbird |
|- ( x e. Q. -> ( *Q ` ( *Q ` x ) ) = x ) |
11 |
3 10
|
vtoclga |
|- ( A e. Q. -> ( *Q ` ( *Q ` A ) ) = A ) |