Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
Assertion | recsfval | |- recs ( F ) = U. A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
2 | dfrecs3 | |- recs ( F ) = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
3 | 1 | unieqi | |- U. A = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
4 | 2 3 | eqtr4i | |- recs ( F ) = U. A |