Metamath Proof Explorer


Theorem recsfval

Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015)

Ref Expression
Hypothesis tfrlem.1
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
Assertion recsfval
|- recs ( F ) = U. A

Proof

Step Hyp Ref Expression
1 tfrlem.1
 |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
2 dfrecs3
 |-  recs ( F ) = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
3 1 unieqi
 |-  U. A = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
4 2 3 eqtr4i
 |-  recs ( F ) = U. A