| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnex |  |-  NN e. _V | 
						
							| 2 | 1 | canth2 |  |-  NN ~< ~P NN | 
						
							| 3 |  | domnsym |  |-  ( ~P NN ~<_ NN -> -. NN ~< ~P NN ) | 
						
							| 4 | 2 3 | mt2 |  |-  -. ~P NN ~<_ NN | 
						
							| 5 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 6 |  | simpl |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> A C_ RR ) | 
						
							| 7 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 8 | 7 | ntropn |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) ) | 
						
							| 9 | 5 6 8 | sylancr |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) ) | 
						
							| 10 |  | opnreen |  |-  ( ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN ) | 
						
							| 11 | 10 | ex |  |-  ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) e. ( topGen ` ran (,) ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN ) ) | 
						
							| 12 | 9 11 | syl |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN ) ) | 
						
							| 13 |  | reex |  |-  RR e. _V | 
						
							| 14 | 13 | ssex |  |-  ( A C_ RR -> A e. _V ) | 
						
							| 15 | 7 | ntrss2 |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) | 
						
							| 16 | 5 15 | mpan |  |-  ( A C_ RR -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) | 
						
							| 17 |  | ssdomg |  |-  ( A e. _V -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ A ) ) | 
						
							| 18 | 14 16 17 | sylc |  |-  ( A C_ RR -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ A ) | 
						
							| 19 |  | domtr |  |-  ( ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ A /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN ) | 
						
							| 20 | 18 19 | sylan |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN ) | 
						
							| 21 |  | ensym |  |-  ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN -> ~P NN ~~ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ) | 
						
							| 22 |  | endomtr |  |-  ( ( ~P NN ~~ ( ( int ` ( topGen ` ran (,) ) ) ` A ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN ) -> ~P NN ~<_ NN ) | 
						
							| 23 | 22 | expcom |  |-  ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~<_ NN -> ( ~P NN ~~ ( ( int ` ( topGen ` ran (,) ) ) ` A ) -> ~P NN ~<_ NN ) ) | 
						
							| 24 | 20 21 23 | syl2im |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) ~~ ~P NN -> ~P NN ~<_ NN ) ) | 
						
							| 25 | 12 24 | syld |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` A ) =/= (/) -> ~P NN ~<_ NN ) ) | 
						
							| 26 | 25 | necon1bd |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( -. ~P NN ~<_ NN -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = (/) ) ) | 
						
							| 27 | 4 26 | mpi |  |-  ( ( A C_ RR /\ A ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = (/) ) |