Step |
Hyp |
Ref |
Expression |
1 |
|
recvs.r |
|- R = ( ringLMod ` RRfld ) |
2 |
|
refld |
|- RRfld e. Field |
3 |
|
fldidom |
|- ( RRfld e. Field -> RRfld e. IDomn ) |
4 |
|
isidom |
|- ( RRfld e. IDomn <-> ( RRfld e. CRing /\ RRfld e. Domn ) ) |
5 |
|
crngring |
|- ( RRfld e. CRing -> RRfld e. Ring ) |
6 |
5
|
adantr |
|- ( ( RRfld e. CRing /\ RRfld e. Domn ) -> RRfld e. Ring ) |
7 |
4 6
|
sylbi |
|- ( RRfld e. IDomn -> RRfld e. Ring ) |
8 |
3 7
|
syl |
|- ( RRfld e. Field -> RRfld e. Ring ) |
9 |
2 8
|
ax-mp |
|- RRfld e. Ring |
10 |
|
rlmlmod |
|- ( RRfld e. Ring -> ( ringLMod ` RRfld ) e. LMod ) |
11 |
9 10
|
ax-mp |
|- ( ringLMod ` RRfld ) e. LMod |
12 |
|
rlmsca |
|- ( RRfld e. Field -> RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) ) |
13 |
2 12
|
ax-mp |
|- RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) |
14 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
15 |
13 14
|
eqtr3i |
|- ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) |
16 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
17 |
16
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
18 |
|
eqid |
|- ( Scalar ` ( ringLMod ` RRfld ) ) = ( Scalar ` ( ringLMod ` RRfld ) ) |
19 |
18
|
isclmi |
|- ( ( ( ringLMod ` RRfld ) e. LMod /\ ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) /\ RR e. ( SubRing ` CCfld ) ) -> ( ringLMod ` RRfld ) e. CMod ) |
20 |
11 15 17 19
|
mp3an |
|- ( ringLMod ` RRfld ) e. CMod |
21 |
16
|
simpri |
|- RRfld e. DivRing |
22 |
|
rlmlvec |
|- ( RRfld e. DivRing -> ( ringLMod ` RRfld ) e. LVec ) |
23 |
21 22
|
ax-mp |
|- ( ringLMod ` RRfld ) e. LVec |
24 |
20 23
|
elini |
|- ( ringLMod ` RRfld ) e. ( CMod i^i LVec ) |
25 |
|
df-cvs |
|- CVec = ( CMod i^i LVec ) |
26 |
24 1 25
|
3eltr4i |
|- R e. CVec |