| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recxpf1.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | recxpf1.2 |  |-  ( ph -> 0 <_ A ) | 
						
							| 3 |  | recxpf1.3 |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | recxpf1.4 |  |-  ( ph -> 0 <_ B ) | 
						
							| 5 |  | recxpf1.5 |  |-  ( ph -> C e. RR+ ) | 
						
							| 6 | 1 2 3 4 5 | cxple2d |  |-  ( ph -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) | 
						
							| 7 | 3 4 1 2 5 | cxple2d |  |-  ( ph -> ( B <_ A <-> ( B ^c C ) <_ ( A ^c C ) ) ) | 
						
							| 8 | 6 7 | anbi12d |  |-  ( ph -> ( ( A <_ B /\ B <_ A ) <-> ( ( A ^c C ) <_ ( B ^c C ) /\ ( B ^c C ) <_ ( A ^c C ) ) ) ) | 
						
							| 9 | 1 3 | letri3d |  |-  ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) | 
						
							| 10 | 5 | rpred |  |-  ( ph -> C e. RR ) | 
						
							| 11 | 1 2 10 | recxpcld |  |-  ( ph -> ( A ^c C ) e. RR ) | 
						
							| 12 | 3 4 10 | recxpcld |  |-  ( ph -> ( B ^c C ) e. RR ) | 
						
							| 13 | 11 12 | letri3d |  |-  ( ph -> ( ( A ^c C ) = ( B ^c C ) <-> ( ( A ^c C ) <_ ( B ^c C ) /\ ( B ^c C ) <_ ( A ^c C ) ) ) ) | 
						
							| 14 | 8 9 13 | 3bitr4d |  |-  ( ph -> ( A = B <-> ( A ^c C ) = ( B ^c C ) ) ) |