| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancom |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. CC ) <-> ( A e. CC /\ ( B e. RR /\ B =/= 0 ) ) ) | 
						
							| 2 |  | 3anass |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) <-> ( A e. CC /\ ( B e. RR /\ B =/= 0 ) ) ) | 
						
							| 3 | 1 2 | bitr4i |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. CC ) <-> ( A e. CC /\ B e. RR /\ B =/= 0 ) ) | 
						
							| 4 |  | rereccl |  |-  ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) | 
						
							| 5 | 4 | anim1i |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. CC ) -> ( ( 1 / B ) e. RR /\ A e. CC ) ) | 
						
							| 6 | 3 5 | sylbir |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( 1 / B ) e. RR /\ A e. CC ) ) | 
						
							| 7 |  | remul2 |  |-  ( ( ( 1 / B ) e. RR /\ A e. CC ) -> ( Re ` ( ( 1 / B ) x. A ) ) = ( ( 1 / B ) x. ( Re ` A ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( ( 1 / B ) x. A ) ) = ( ( 1 / B ) x. ( Re ` A ) ) ) | 
						
							| 9 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 10 |  | divrec2 |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( ( 1 / B ) x. A ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( Re ` ( ( 1 / B ) x. A ) ) ) | 
						
							| 12 | 9 11 | syl3an2 |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( Re ` ( ( 1 / B ) x. A ) ) ) | 
						
							| 13 |  | recl |  |-  ( A e. CC -> ( Re ` A ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( A e. CC -> ( Re ` A ) e. CC ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` A ) e. CC ) | 
						
							| 16 | 9 | 3ad2ant2 |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> B e. CC ) | 
						
							| 17 |  | simp3 |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> B =/= 0 ) | 
						
							| 18 | 15 16 17 | divrec2d |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( Re ` A ) / B ) = ( ( 1 / B ) x. ( Re ` A ) ) ) | 
						
							| 19 | 8 12 18 | 3eqtr4d |  |-  ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( ( Re ` A ) / B ) ) |