Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcld.1 | |- ( ph -> A e. RR ) |
|
| redivcld.2 | |- ( ph -> B e. RR ) |
||
| redivcld.3 | |- ( ph -> B =/= 0 ) |
||
| Assertion | redivcld | |- ( ph -> ( A / B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | redivcld.2 | |- ( ph -> B e. RR ) |
|
| 3 | redivcld.3 | |- ( ph -> B =/= 0 ) |
|
| 4 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A / B ) e. RR ) |