Metamath Proof Explorer


Theorem redivcld

Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses redivcld.1
|- ( ph -> A e. RR )
redivcld.2
|- ( ph -> B e. RR )
redivcld.3
|- ( ph -> B =/= 0 )
Assertion redivcld
|- ( ph -> ( A / B ) e. RR )

Proof

Step Hyp Ref Expression
1 redivcld.1
 |-  ( ph -> A e. RR )
2 redivcld.2
 |-  ( ph -> B e. RR )
3 redivcld.3
 |-  ( ph -> B =/= 0 )
4 redivcl
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A / B ) e. RR )