Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | redivcld.1 | |- ( ph -> A e. RR ) |
|
redivcld.2 | |- ( ph -> B e. RR ) |
||
redivcld.3 | |- ( ph -> B =/= 0 ) |
||
Assertion | redivcld | |- ( ph -> ( A / B ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcld.1 | |- ( ph -> A e. RR ) |
|
2 | redivcld.2 | |- ( ph -> B e. RR ) |
|
3 | redivcld.3 | |- ( ph -> B =/= 0 ) |
|
4 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A / B ) e. RR ) |