Metamath Proof Explorer


Theorem redivcli

Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)

Ref Expression
Hypotheses redivcl.1
|- A e. RR
redivcl.2
|- B e. RR
redivcl.3
|- B =/= 0
Assertion redivcli
|- ( A / B ) e. RR

Proof

Step Hyp Ref Expression
1 redivcl.1
 |-  A e. RR
2 redivcl.2
 |-  B e. RR
3 redivcl.3
 |-  B =/= 0
4 1 2 redivclzi
 |-  ( B =/= 0 -> ( A / B ) e. RR )
5 3 4 ax-mp
 |-  ( A / B ) e. RR