Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcl.1 | |- A e. RR | |
| redivcl.2 | |- B e. RR | ||
| Assertion | redivclzi | |- ( B =/= 0 -> ( A / B ) e. RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | redivcl.1 | |- A e. RR | |
| 2 | redivcl.2 | |- B e. RR | |
| 3 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) | |
| 4 | 1 2 3 | mp3an12 | |- ( B =/= 0 -> ( A / B ) e. RR ) |