Description: Real part of a division. Related to remul2 . (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crred.1 | |- ( ph -> A e. RR ) | |
| remul2d.2 | |- ( ph -> B e. CC ) | ||
| redivd.2 | |- ( ph -> A =/= 0 ) | ||
| Assertion | redivd | |- ( ph -> ( Re ` ( B / A ) ) = ( ( Re ` B ) / A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | crred.1 | |- ( ph -> A e. RR ) | |
| 2 | remul2d.2 | |- ( ph -> B e. CC ) | |
| 3 | redivd.2 | |- ( ph -> A =/= 0 ) | |
| 4 | rediv | |- ( ( B e. CC /\ A e. RR /\ A =/= 0 ) -> ( Re ` ( B / A ) ) = ( ( Re ` B ) / A ) ) | |
| 5 | 2 1 3 4 | syl3anc | |- ( ph -> ( Re ` ( B / A ) ) = ( ( Re ` B ) / A ) ) |