Step |
Hyp |
Ref |
Expression |
1 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
2 |
1
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
3 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> A e. RR ) |
4 |
|
3simpc |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( B e. RR /\ B =/= 0 ) ) |
5 |
1
|
simpri |
|- RRfld e. DivRing |
6 |
|
rebase |
|- RR = ( Base ` RRfld ) |
7 |
|
eqid |
|- ( Unit ` RRfld ) = ( Unit ` RRfld ) |
8 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
9 |
6 7 8
|
drngunit |
|- ( RRfld e. DivRing -> ( B e. ( Unit ` RRfld ) <-> ( B e. RR /\ B =/= 0 ) ) ) |
10 |
5 9
|
ax-mp |
|- ( B e. ( Unit ` RRfld ) <-> ( B e. RR /\ B =/= 0 ) ) |
11 |
4 10
|
sylibr |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> B e. ( Unit ` RRfld ) ) |
12 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
13 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
14 |
|
eqid |
|- ( /r ` RRfld ) = ( /r ` RRfld ) |
15 |
12 13 7 14
|
subrgdv |
|- ( ( RR e. ( SubRing ` CCfld ) /\ A e. RR /\ B e. ( Unit ` RRfld ) ) -> ( A / B ) = ( A ( /r ` RRfld ) B ) ) |
16 |
2 3 11 15
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) = ( A ( /r ` RRfld ) B ) ) |
17 |
16
|
eqcomd |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A ( /r ` RRfld ) B ) = ( A / B ) ) |