| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( ( F e. Word S /\ 1 <_ ( # ` F ) ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> P : ( 0 ... ( # ` F ) ) --> V ) | 
						
							| 2 |  | fzossfz |  |-  ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) | 
						
							| 3 |  | fssres |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( ( ( F e. Word S /\ 1 <_ ( # ` F ) ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V ) | 
						
							| 5 | 4 | ex |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V ) ) | 
						
							| 6 |  | lencl |  |-  ( F e. Word S -> ( # ` F ) e. NN0 ) | 
						
							| 7 | 6 | nn0zd |  |-  ( F e. Word S -> ( # ` F ) e. ZZ ) | 
						
							| 8 |  | fzoval |  |-  ( ( # ` F ) e. ZZ -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( F e. Word S -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 11 |  | wrdred1hash |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) | 
						
							| 12 |  | oveq2 |  |-  ( ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) -> ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) -> ( ( 0 ..^ ( # ` F ) ) = ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) <-> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( ( 0 ..^ ( # ` F ) ) = ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) <-> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 15 | 10 14 | mpbird |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) ) | 
						
							| 16 | 15 | feq2d |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V <-> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) ) | 
						
							| 17 | 5 16 | sylibd |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) ) | 
						
							| 18 | 17 | 3impia |  |-  ( ( F e. Word S /\ 1 <_ ( # ` F ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) |