Metamath Proof Explorer


Theorem reean

Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses reean.1
|- F/ y ph
reean.2
|- F/ x ps
Assertion reean
|- ( E. x e. A E. y e. B ( ph /\ ps ) <-> ( E. x e. A ph /\ E. y e. B ps ) )

Proof

Step Hyp Ref Expression
1 reean.1
 |-  F/ y ph
2 reean.2
 |-  F/ x ps
3 nfv
 |-  F/ y x e. A
4 3 1 nfan
 |-  F/ y ( x e. A /\ ph )
5 nfv
 |-  F/ x y e. B
6 5 2 nfan
 |-  F/ x ( y e. B /\ ps )
7 4 6 eean
 |-  ( E. x E. y ( ( x e. A /\ ph ) /\ ( y e. B /\ ps ) ) <-> ( E. x ( x e. A /\ ph ) /\ E. y ( y e. B /\ ps ) ) )
8 7 reeanlem
 |-  ( E. x e. A E. y e. B ( ph /\ ps ) <-> ( E. x e. A ph /\ E. y e. B ps ) )