Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reean.1 | |- F/ y ph |
|
reean.2 | |- F/ x ps |
||
Assertion | reean | |- ( E. x e. A E. y e. B ( ph /\ ps ) <-> ( E. x e. A ph /\ E. y e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reean.1 | |- F/ y ph |
|
2 | reean.2 | |- F/ x ps |
|
3 | nfv | |- F/ y x e. A |
|
4 | 3 1 | nfan | |- F/ y ( x e. A /\ ph ) |
5 | nfv | |- F/ x y e. B |
|
6 | 5 2 | nfan | |- F/ x ( y e. B /\ ps ) |
7 | 4 6 | eean | |- ( E. x E. y ( ( x e. A /\ ph ) /\ ( y e. B /\ ps ) ) <-> ( E. x ( x e. A /\ ph ) /\ E. y ( y e. B /\ ps ) ) ) |
8 | 7 | reeanlem | |- ( E. x e. A E. y e. B ( ph /\ ps ) <-> ( E. x e. A ph /\ E. y e. B ps ) ) |