Step |
Hyp |
Ref |
Expression |
1 |
|
reeff1 |
|- ( exp |` RR ) : RR -1-1-> RR+ |
2 |
|
f1f |
|- ( ( exp |` RR ) : RR -1-1-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
3 |
|
ffn |
|- ( ( exp |` RR ) : RR --> RR+ -> ( exp |` RR ) Fn RR ) |
4 |
1 2 3
|
mp2b |
|- ( exp |` RR ) Fn RR |
5 |
|
frn |
|- ( ( exp |` RR ) : RR --> RR+ -> ran ( exp |` RR ) C_ RR+ ) |
6 |
1 2 5
|
mp2b |
|- ran ( exp |` RR ) C_ RR+ |
7 |
|
elrp |
|- ( z e. RR+ <-> ( z e. RR /\ 0 < z ) ) |
8 |
|
reclt1 |
|- ( ( z e. RR /\ 0 < z ) -> ( z < 1 <-> 1 < ( 1 / z ) ) ) |
9 |
7 8
|
sylbi |
|- ( z e. RR+ -> ( z < 1 <-> 1 < ( 1 / z ) ) ) |
10 |
|
rpre |
|- ( z e. RR+ -> z e. RR ) |
11 |
|
rpne0 |
|- ( z e. RR+ -> z =/= 0 ) |
12 |
10 11
|
rereccld |
|- ( z e. RR+ -> ( 1 / z ) e. RR ) |
13 |
|
reeff1olem |
|- ( ( ( 1 / z ) e. RR /\ 1 < ( 1 / z ) ) -> E. y e. RR ( exp ` y ) = ( 1 / z ) ) |
14 |
12 13
|
sylan |
|- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> E. y e. RR ( exp ` y ) = ( 1 / z ) ) |
15 |
|
eqcom |
|- ( ( 1 / z ) = ( exp ` y ) <-> ( exp ` y ) = ( 1 / z ) ) |
16 |
|
rpcnne0 |
|- ( z e. RR+ -> ( z e. CC /\ z =/= 0 ) ) |
17 |
|
recn |
|- ( y e. RR -> y e. CC ) |
18 |
|
efcl |
|- ( y e. CC -> ( exp ` y ) e. CC ) |
19 |
17 18
|
syl |
|- ( y e. RR -> ( exp ` y ) e. CC ) |
20 |
|
efne0 |
|- ( y e. CC -> ( exp ` y ) =/= 0 ) |
21 |
17 20
|
syl |
|- ( y e. RR -> ( exp ` y ) =/= 0 ) |
22 |
19 21
|
jca |
|- ( y e. RR -> ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) |
23 |
|
rec11r |
|- ( ( ( z e. CC /\ z =/= 0 ) /\ ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) -> ( ( 1 / z ) = ( exp ` y ) <-> ( 1 / ( exp ` y ) ) = z ) ) |
24 |
16 22 23
|
syl2an |
|- ( ( z e. RR+ /\ y e. RR ) -> ( ( 1 / z ) = ( exp ` y ) <-> ( 1 / ( exp ` y ) ) = z ) ) |
25 |
|
efcan |
|- ( y e. CC -> ( ( exp ` y ) x. ( exp ` -u y ) ) = 1 ) |
26 |
25
|
eqcomd |
|- ( y e. CC -> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) |
27 |
|
negcl |
|- ( y e. CC -> -u y e. CC ) |
28 |
|
efcl |
|- ( -u y e. CC -> ( exp ` -u y ) e. CC ) |
29 |
27 28
|
syl |
|- ( y e. CC -> ( exp ` -u y ) e. CC ) |
30 |
|
ax-1cn |
|- 1 e. CC |
31 |
|
divmul2 |
|- ( ( 1 e. CC /\ ( exp ` -u y ) e. CC /\ ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) -> ( ( 1 / ( exp ` y ) ) = ( exp ` -u y ) <-> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) ) |
32 |
30 31
|
mp3an1 |
|- ( ( ( exp ` -u y ) e. CC /\ ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) -> ( ( 1 / ( exp ` y ) ) = ( exp ` -u y ) <-> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) ) |
33 |
29 18 20 32
|
syl12anc |
|- ( y e. CC -> ( ( 1 / ( exp ` y ) ) = ( exp ` -u y ) <-> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) ) |
34 |
26 33
|
mpbird |
|- ( y e. CC -> ( 1 / ( exp ` y ) ) = ( exp ` -u y ) ) |
35 |
17 34
|
syl |
|- ( y e. RR -> ( 1 / ( exp ` y ) ) = ( exp ` -u y ) ) |
36 |
35
|
eqeq1d |
|- ( y e. RR -> ( ( 1 / ( exp ` y ) ) = z <-> ( exp ` -u y ) = z ) ) |
37 |
36
|
adantl |
|- ( ( z e. RR+ /\ y e. RR ) -> ( ( 1 / ( exp ` y ) ) = z <-> ( exp ` -u y ) = z ) ) |
38 |
24 37
|
bitrd |
|- ( ( z e. RR+ /\ y e. RR ) -> ( ( 1 / z ) = ( exp ` y ) <-> ( exp ` -u y ) = z ) ) |
39 |
15 38
|
bitr3id |
|- ( ( z e. RR+ /\ y e. RR ) -> ( ( exp ` y ) = ( 1 / z ) <-> ( exp ` -u y ) = z ) ) |
40 |
39
|
biimpd |
|- ( ( z e. RR+ /\ y e. RR ) -> ( ( exp ` y ) = ( 1 / z ) -> ( exp ` -u y ) = z ) ) |
41 |
40
|
reximdva |
|- ( z e. RR+ -> ( E. y e. RR ( exp ` y ) = ( 1 / z ) -> E. y e. RR ( exp ` -u y ) = z ) ) |
42 |
41
|
adantr |
|- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> ( E. y e. RR ( exp ` y ) = ( 1 / z ) -> E. y e. RR ( exp ` -u y ) = z ) ) |
43 |
14 42
|
mpd |
|- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> E. y e. RR ( exp ` -u y ) = z ) |
44 |
|
renegcl |
|- ( y e. RR -> -u y e. RR ) |
45 |
|
infm3lem |
|- ( x e. RR -> E. y e. RR x = -u y ) |
46 |
|
fveqeq2 |
|- ( x = -u y -> ( ( exp ` x ) = z <-> ( exp ` -u y ) = z ) ) |
47 |
44 45 46
|
rexxfr |
|- ( E. x e. RR ( exp ` x ) = z <-> E. y e. RR ( exp ` -u y ) = z ) |
48 |
43 47
|
sylibr |
|- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> E. x e. RR ( exp ` x ) = z ) |
49 |
48
|
ex |
|- ( z e. RR+ -> ( 1 < ( 1 / z ) -> E. x e. RR ( exp ` x ) = z ) ) |
50 |
9 49
|
sylbid |
|- ( z e. RR+ -> ( z < 1 -> E. x e. RR ( exp ` x ) = z ) ) |
51 |
50
|
imp |
|- ( ( z e. RR+ /\ z < 1 ) -> E. x e. RR ( exp ` x ) = z ) |
52 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
53 |
52
|
eqeq2i |
|- ( z = ( exp ` 0 ) <-> z = 1 ) |
54 |
|
0re |
|- 0 e. RR |
55 |
|
fveqeq2 |
|- ( x = 0 -> ( ( exp ` x ) = z <-> ( exp ` 0 ) = z ) ) |
56 |
55
|
rspcev |
|- ( ( 0 e. RR /\ ( exp ` 0 ) = z ) -> E. x e. RR ( exp ` x ) = z ) |
57 |
54 56
|
mpan |
|- ( ( exp ` 0 ) = z -> E. x e. RR ( exp ` x ) = z ) |
58 |
57
|
eqcoms |
|- ( z = ( exp ` 0 ) -> E. x e. RR ( exp ` x ) = z ) |
59 |
53 58
|
sylbir |
|- ( z = 1 -> E. x e. RR ( exp ` x ) = z ) |
60 |
59
|
adantl |
|- ( ( z e. RR+ /\ z = 1 ) -> E. x e. RR ( exp ` x ) = z ) |
61 |
|
reeff1olem |
|- ( ( z e. RR /\ 1 < z ) -> E. x e. RR ( exp ` x ) = z ) |
62 |
10 61
|
sylan |
|- ( ( z e. RR+ /\ 1 < z ) -> E. x e. RR ( exp ` x ) = z ) |
63 |
|
1re |
|- 1 e. RR |
64 |
|
lttri4 |
|- ( ( z e. RR /\ 1 e. RR ) -> ( z < 1 \/ z = 1 \/ 1 < z ) ) |
65 |
10 63 64
|
sylancl |
|- ( z e. RR+ -> ( z < 1 \/ z = 1 \/ 1 < z ) ) |
66 |
51 60 62 65
|
mpjao3dan |
|- ( z e. RR+ -> E. x e. RR ( exp ` x ) = z ) |
67 |
|
fvres |
|- ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) |
68 |
67
|
eqeq1d |
|- ( x e. RR -> ( ( ( exp |` RR ) ` x ) = z <-> ( exp ` x ) = z ) ) |
69 |
68
|
rexbiia |
|- ( E. x e. RR ( ( exp |` RR ) ` x ) = z <-> E. x e. RR ( exp ` x ) = z ) |
70 |
66 69
|
sylibr |
|- ( z e. RR+ -> E. x e. RR ( ( exp |` RR ) ` x ) = z ) |
71 |
|
fvelrnb |
|- ( ( exp |` RR ) Fn RR -> ( z e. ran ( exp |` RR ) <-> E. x e. RR ( ( exp |` RR ) ` x ) = z ) ) |
72 |
4 71
|
ax-mp |
|- ( z e. ran ( exp |` RR ) <-> E. x e. RR ( ( exp |` RR ) ` x ) = z ) |
73 |
70 72
|
sylibr |
|- ( z e. RR+ -> z e. ran ( exp |` RR ) ) |
74 |
73
|
ssriv |
|- RR+ C_ ran ( exp |` RR ) |
75 |
6 74
|
eqssi |
|- ran ( exp |` RR ) = RR+ |
76 |
|
df-fo |
|- ( ( exp |` RR ) : RR -onto-> RR+ <-> ( ( exp |` RR ) Fn RR /\ ran ( exp |` RR ) = RR+ ) ) |
77 |
4 75 76
|
mpbir2an |
|- ( exp |` RR ) : RR -onto-> RR+ |
78 |
|
df-f1o |
|- ( ( exp |` RR ) : RR -1-1-onto-> RR+ <-> ( ( exp |` RR ) : RR -1-1-> RR+ /\ ( exp |` RR ) : RR -onto-> RR+ ) ) |
79 |
1 77 78
|
mpbir2an |
|- ( exp |` RR ) : RR -1-1-onto-> RR+ |