| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioossicc |
|- ( 0 (,) U ) C_ ( 0 [,] U ) |
| 2 |
|
0re |
|- 0 e. RR |
| 3 |
|
iccssre |
|- ( ( 0 e. RR /\ U e. RR ) -> ( 0 [,] U ) C_ RR ) |
| 4 |
2 3
|
mpan |
|- ( U e. RR -> ( 0 [,] U ) C_ RR ) |
| 5 |
4
|
adantr |
|- ( ( U e. RR /\ 1 < U ) -> ( 0 [,] U ) C_ RR ) |
| 6 |
1 5
|
sstrid |
|- ( ( U e. RR /\ 1 < U ) -> ( 0 (,) U ) C_ RR ) |
| 7 |
2
|
a1i |
|- ( ( U e. RR /\ 1 < U ) -> 0 e. RR ) |
| 8 |
|
simpl |
|- ( ( U e. RR /\ 1 < U ) -> U e. RR ) |
| 9 |
|
0lt1 |
|- 0 < 1 |
| 10 |
|
1re |
|- 1 e. RR |
| 11 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ U e. RR ) -> ( ( 0 < 1 /\ 1 < U ) -> 0 < U ) ) |
| 12 |
2 10 11
|
mp3an12 |
|- ( U e. RR -> ( ( 0 < 1 /\ 1 < U ) -> 0 < U ) ) |
| 13 |
9 12
|
mpani |
|- ( U e. RR -> ( 1 < U -> 0 < U ) ) |
| 14 |
13
|
imp |
|- ( ( U e. RR /\ 1 < U ) -> 0 < U ) |
| 15 |
|
ax-resscn |
|- RR C_ CC |
| 16 |
5 15
|
sstrdi |
|- ( ( U e. RR /\ 1 < U ) -> ( 0 [,] U ) C_ CC ) |
| 17 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 18 |
17
|
a1i |
|- ( ( U e. RR /\ 1 < U ) -> exp e. ( CC -cn-> CC ) ) |
| 19 |
|
ssel2 |
|- ( ( ( 0 [,] U ) C_ RR /\ y e. ( 0 [,] U ) ) -> y e. RR ) |
| 20 |
19
|
reefcld |
|- ( ( ( 0 [,] U ) C_ RR /\ y e. ( 0 [,] U ) ) -> ( exp ` y ) e. RR ) |
| 21 |
5 20
|
sylan |
|- ( ( ( U e. RR /\ 1 < U ) /\ y e. ( 0 [,] U ) ) -> ( exp ` y ) e. RR ) |
| 22 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 23 |
|
simpr |
|- ( ( U e. RR /\ 1 < U ) -> 1 < U ) |
| 24 |
22 23
|
eqbrtrid |
|- ( ( U e. RR /\ 1 < U ) -> ( exp ` 0 ) < U ) |
| 25 |
|
peano2re |
|- ( U e. RR -> ( U + 1 ) e. RR ) |
| 26 |
25
|
adantr |
|- ( ( U e. RR /\ 1 < U ) -> ( U + 1 ) e. RR ) |
| 27 |
|
reefcl |
|- ( U e. RR -> ( exp ` U ) e. RR ) |
| 28 |
27
|
adantr |
|- ( ( U e. RR /\ 1 < U ) -> ( exp ` U ) e. RR ) |
| 29 |
|
ltp1 |
|- ( U e. RR -> U < ( U + 1 ) ) |
| 30 |
29
|
adantr |
|- ( ( U e. RR /\ 1 < U ) -> U < ( U + 1 ) ) |
| 31 |
8
|
recnd |
|- ( ( U e. RR /\ 1 < U ) -> U e. CC ) |
| 32 |
|
ax-1cn |
|- 1 e. CC |
| 33 |
|
addcom |
|- ( ( U e. CC /\ 1 e. CC ) -> ( U + 1 ) = ( 1 + U ) ) |
| 34 |
31 32 33
|
sylancl |
|- ( ( U e. RR /\ 1 < U ) -> ( U + 1 ) = ( 1 + U ) ) |
| 35 |
8 14
|
elrpd |
|- ( ( U e. RR /\ 1 < U ) -> U e. RR+ ) |
| 36 |
|
efgt1p |
|- ( U e. RR+ -> ( 1 + U ) < ( exp ` U ) ) |
| 37 |
35 36
|
syl |
|- ( ( U e. RR /\ 1 < U ) -> ( 1 + U ) < ( exp ` U ) ) |
| 38 |
34 37
|
eqbrtrd |
|- ( ( U e. RR /\ 1 < U ) -> ( U + 1 ) < ( exp ` U ) ) |
| 39 |
8 26 28 30 38
|
lttrd |
|- ( ( U e. RR /\ 1 < U ) -> U < ( exp ` U ) ) |
| 40 |
24 39
|
jca |
|- ( ( U e. RR /\ 1 < U ) -> ( ( exp ` 0 ) < U /\ U < ( exp ` U ) ) ) |
| 41 |
7 8 8 14 16 18 21 40
|
ivth |
|- ( ( U e. RR /\ 1 < U ) -> E. x e. ( 0 (,) U ) ( exp ` x ) = U ) |
| 42 |
|
ssrexv |
|- ( ( 0 (,) U ) C_ RR -> ( E. x e. ( 0 (,) U ) ( exp ` x ) = U -> E. x e. RR ( exp ` x ) = U ) ) |
| 43 |
6 41 42
|
sylc |
|- ( ( U e. RR /\ 1 < U ) -> E. x e. RR ( exp ` x ) = U ) |