Metamath Proof Explorer


Theorem reefiso

Description: The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007) (Revised by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion reefiso
|- ( exp |` RR ) Isom < , < ( RR , RR+ )

Proof

Step Hyp Ref Expression
1 reeff1o
 |-  ( exp |` RR ) : RR -1-1-onto-> RR+
2 eflt
 |-  ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( exp ` x ) < ( exp ` y ) ) )
3 fvres
 |-  ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) )
4 fvres
 |-  ( y e. RR -> ( ( exp |` RR ) ` y ) = ( exp ` y ) )
5 3 4 breqan12d
 |-  ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) <-> ( exp ` x ) < ( exp ` y ) ) )
6 2 5 bitr4d
 |-  ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) )
7 6 rgen2
 |-  A. x e. RR A. y e. RR ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) )
8 df-isom
 |-  ( ( exp |` RR ) Isom < , < ( RR , RR+ ) <-> ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ A. x e. RR A. y e. RR ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) ) )
9 1 7 8 mpbir2an
 |-  ( exp |` RR ) Isom < , < ( RR , RR+ )