Step |
Hyp |
Ref |
Expression |
1 |
|
eftl.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
3 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
4 |
3
|
adantl |
|- ( ( A e. RR /\ M e. NN0 ) -> M e. ZZ ) |
5 |
|
eqidd |
|- ( ( ( A e. RR /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
6 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
7 |
6
|
adantll |
|- ( ( ( A e. RR /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
8 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
9 |
7 8
|
syl |
|- ( ( ( A e. RR /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
10 |
|
simpll |
|- ( ( ( A e. RR /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> A e. RR ) |
11 |
|
reeftcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
12 |
10 7 11
|
syl2anc |
|- ( ( ( A e. RR /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
13 |
9 12
|
eqeltrd |
|- ( ( ( A e. RR /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. RR ) |
14 |
|
recn |
|- ( A e. RR -> A e. CC ) |
15 |
1
|
eftlcvg |
|- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
16 |
14 15
|
sylan |
|- ( ( A e. RR /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
17 |
2 4 5 13 16
|
isumrecl |
|- ( ( A e. RR /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. RR ) |