Description: Closure of exponentiation of reals. For integer exponents, see reexpclz . (Contributed by NM, 14-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reexpcl | |- ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn | |- RR C_ CC |
|
| 2 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | 1 2 3 | expcllem | |- ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR ) |