Metamath Proof Explorer


Theorem reexpcld

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1
|- ( ph -> A e. RR )
reexpcld.2
|- ( ph -> N e. NN0 )
Assertion reexpcld
|- ( ph -> ( A ^ N ) e. RR )

Proof

Step Hyp Ref Expression
1 reexpcld.1
 |-  ( ph -> A e. RR )
2 reexpcld.2
 |-  ( ph -> N e. NN0 )
3 reexpcl
 |-  ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^ N ) e. RR )