Metamath Proof Explorer


Theorem reexpclzd

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpclzd.1
|- ( ph -> A e. RR )
rpexpclzd.2
|- ( ph -> A =/= 0 )
rpexpclzd.3
|- ( ph -> N e. ZZ )
Assertion reexpclzd
|- ( ph -> ( A ^ N ) e. RR )

Proof

Step Hyp Ref Expression
1 rpexpclzd.1
 |-  ( ph -> A e. RR )
2 rpexpclzd.2
 |-  ( ph -> A =/= 0 )
3 rpexpclzd.3
 |-  ( ph -> N e. ZZ )
4 reexpclz
 |-  ( ( A e. RR /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. RR )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A ^ N ) e. RR )