Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
2 |
1
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
3 |
|
efexp |
|- ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
4 |
2 3
|
sylan |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
5 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
6 |
5
|
oveq1d |
|- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
7 |
6
|
adantr |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
8 |
4 7
|
eqtr2d |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) = ( exp ` ( N x. ( log ` A ) ) ) ) |