Metamath Proof Explorer


Theorem ref

Description: Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion ref
|- Re : CC --> RR

Proof

Step Hyp Ref Expression
1 df-re
 |-  Re = ( x e. CC |-> ( ( x + ( * ` x ) ) / 2 ) )
2 reval
 |-  ( x e. CC -> ( Re ` x ) = ( ( x + ( * ` x ) ) / 2 ) )
3 recl
 |-  ( x e. CC -> ( Re ` x ) e. RR )
4 2 3 eqeltrrd
 |-  ( x e. CC -> ( ( x + ( * ` x ) ) / 2 ) e. RR )
5 1 4 fmpti
 |-  Re : CC --> RR