Metamath Proof Explorer


Theorem refldivcl

Description: The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion refldivcl
|- ( ( K e. RR /\ L e. RR+ ) -> ( |_ ` ( K / L ) ) e. RR )

Proof

Step Hyp Ref Expression
1 rerpdivcl
 |-  ( ( K e. RR /\ L e. RR+ ) -> ( K / L ) e. RR )
2 reflcl
 |-  ( ( K / L ) e. RR -> ( |_ ` ( K / L ) ) e. RR )
3 1 2 syl
 |-  ( ( K e. RR /\ L e. RR+ ) -> ( |_ ` ( K / L ) ) e. RR )