| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmeq | 
							 |-  ( R = S -> dom R = dom S )  | 
						
						
							| 2 | 
							
								
							 | 
							rneq | 
							 |-  ( R = S -> ran R = ran S )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							xpeq12d | 
							 |-  ( R = S -> ( dom R X. ran R ) = ( dom S X. ran S ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ineq2d | 
							 |-  ( R = S -> ( _I i^i ( dom R X. ran R ) ) = ( _I i^i ( dom S X. ran S ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							 |-  ( R = S -> R = S )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sseq12d | 
							 |-  ( R = S -> ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> ( _I i^i ( dom S X. ran S ) ) C_ S ) )  | 
						
						
							| 7 | 
							
								
							 | 
							releq | 
							 |-  ( R = S -> ( Rel R <-> Rel S ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							anbi12d | 
							 |-  ( R = S -> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) <-> ( ( _I i^i ( dom S X. ran S ) ) C_ S /\ Rel S ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dfrefrel2 | 
							 |-  ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )  | 
						
						
							| 10 | 
							
								
							 | 
							dfrefrel2 | 
							 |-  ( RefRel S <-> ( ( _I i^i ( dom S X. ran S ) ) C_ S /\ Rel S ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr4g | 
							 |-  ( R = S -> ( RefRel R <-> RefRel S ) )  |