Metamath Proof Explorer


Theorem refrelressn

Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion refrelressn
|- ( A e. V -> RefRel ( R |` { A } ) )

Proof

Step Hyp Ref Expression
1 refressn
 |-  ( A e. V -> A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x )
2 relres
 |-  Rel ( R |` { A } )
3 dfrefrel5
 |-  ( RefRel ( R |` { A } ) <-> ( A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x /\ Rel ( R |` { A } ) ) )
4 1 2 3 sylanblrc
 |-  ( A e. V -> RefRel ( R |` { A } ) )