Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelressn | |- ( A e. V -> RefRel ( R |` { A } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refressn | |- ( A e. V -> A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x ) |
|
2 | relres | |- Rel ( R |` { A } ) |
|
3 | dfrefrel5 | |- ( RefRel ( R |` { A } ) <-> ( A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x /\ Rel ( R |` { A } ) ) ) |
|
4 | 1 2 3 | sylanblrc | |- ( A e. V -> RefRel ( R |` { A } ) ) |