| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							refsum2cnlem1.1 | 
							 |-  F/_ x A  | 
						
						
							| 2 | 
							
								
							 | 
							refsum2cnlem1.2 | 
							 |-  F/_ x F  | 
						
						
							| 3 | 
							
								
							 | 
							refsum2cnlem1.3 | 
							 |-  F/_ x G  | 
						
						
							| 4 | 
							
								
							 | 
							refsum2cnlem1.4 | 
							 |-  F/ x ph  | 
						
						
							| 5 | 
							
								
							 | 
							refsum2cnlem1.5 | 
							 |-  A = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) | 
						
						
							| 6 | 
							
								
							 | 
							refsum2cnlem1.6 | 
							 |-  K = ( topGen ` ran (,) )  | 
						
						
							| 7 | 
							
								
							 | 
							refsum2cnlem1.7 | 
							 |-  ( ph -> J e. ( TopOn ` X ) )  | 
						
						
							| 8 | 
							
								
							 | 
							refsum2cnlem1.8 | 
							 |-  ( ph -> F e. ( J Cn K ) )  | 
						
						
							| 9 | 
							
								
							 | 
							refsum2cnlem1.9 | 
							 |-  ( ph -> G e. ( J Cn K ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nfmpt1 | 
							 |-  F/_ k ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) | 
						
						
							| 11 | 
							
								5 10
							 | 
							nfcxfr | 
							 |-  F/_ k A  | 
						
						
							| 12 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ k 1  | 
						
						
							| 13 | 
							
								11 12
							 | 
							nffv | 
							 |-  F/_ k ( A ` 1 )  | 
						
						
							| 14 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ k x  | 
						
						
							| 15 | 
							
								13 14
							 | 
							nffv | 
							 |-  F/_ k ( ( A ` 1 ) ` x )  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 1 ) ` x ) )  | 
						
						
							| 17 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ k 2  | 
						
						
							| 18 | 
							
								11 17
							 | 
							nffv | 
							 |-  F/_ k ( A ` 2 )  | 
						
						
							| 19 | 
							
								18 14
							 | 
							nffv | 
							 |-  F/_ k ( ( A ` 2 ) ` x )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 2 ) ` x ) )  | 
						
						
							| 21 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( ph /\ x e. X ) -> 1 e. CC )  | 
						
						
							| 22 | 
							
								
							 | 
							2cnd | 
							 |-  ( ( ph /\ x e. X ) -> 2 e. CC )  | 
						
						
							| 23 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 24 | 
							
								23
							 | 
							prid1 | 
							 |-  1 e. { 1 , 2 } | 
						
						
							| 25 | 
							
								8 9
							 | 
							ifcld | 
							 |-  ( ph -> if ( 1 = 1 , F , G ) e. ( J Cn K ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( k = 1 -> ( k = 1 <-> 1 = 1 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							ifbid | 
							 |-  ( k = 1 -> if ( k = 1 , F , G ) = if ( 1 = 1 , F , G ) )  | 
						
						
							| 28 | 
							
								27 5
							 | 
							fvmptg | 
							 |-  ( ( 1 e. { 1 , 2 } /\ if ( 1 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							sylancr | 
							 |-  ( ph -> ( A ` 1 ) = if ( 1 = 1 , F , G ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  1 = 1  | 
						
						
							| 31 | 
							
								30
							 | 
							iftruei | 
							 |-  if ( 1 = 1 , F , G ) = F  | 
						
						
							| 32 | 
							
								29 31
							 | 
							eqtrdi | 
							 |-  ( ph -> ( A ` 1 ) = F )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. X ) -> ( A ` 1 ) = F )  | 
						
						
							| 34 | 
							
								33
							 | 
							fveq1d | 
							 |-  ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) = ( F ` x ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							 |-  U. J = U. J  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							 |-  U. K = U. K  | 
						
						
							| 37 | 
							
								35 36
							 | 
							cnf | 
							 |-  ( F e. ( J Cn K ) -> F : U. J --> U. K )  | 
						
						
							| 38 | 
							
								8 37
							 | 
							syl | 
							 |-  ( ph -> F : U. J --> U. K )  | 
						
						
							| 39 | 
							
								
							 | 
							toponuni | 
							 |-  ( J e. ( TopOn ` X ) -> X = U. J )  | 
						
						
							| 40 | 
							
								7 39
							 | 
							syl | 
							 |-  ( ph -> X = U. J )  | 
						
						
							| 41 | 
							
								40
							 | 
							eqcomd | 
							 |-  ( ph -> U. J = X )  | 
						
						
							| 42 | 
							
								6
							 | 
							unieqi | 
							 |-  U. K = U. ( topGen ` ran (,) )  | 
						
						
							| 43 | 
							
								
							 | 
							uniretop | 
							 |-  RR = U. ( topGen ` ran (,) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							eqtr4i | 
							 |-  U. K = RR  | 
						
						
							| 45 | 
							
								44
							 | 
							a1i | 
							 |-  ( ph -> U. K = RR )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							feq23d | 
							 |-  ( ph -> ( F : U. J --> U. K <-> F : X --> RR ) )  | 
						
						
							| 47 | 
							
								38 46
							 | 
							mpbid | 
							 |-  ( ph -> F : X --> RR )  | 
						
						
							| 48 | 
							
								47
							 | 
							anim1i | 
							 |-  ( ( ph /\ x e. X ) -> ( F : X --> RR /\ x e. X ) )  | 
						
						
							| 49 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( F : X --> RR /\ x e. X ) -> ( F ` x ) e. RR )  | 
						
						
							| 50 | 
							
								
							 | 
							recn | 
							 |-  ( ( F ` x ) e. RR -> ( F ` x ) e. CC )  | 
						
						
							| 51 | 
							
								48 49 50
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. CC )  | 
						
						
							| 52 | 
							
								34 51
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) e. CC )  | 
						
						
							| 53 | 
							
								
							 | 
							2ex | 
							 |-  2 e. _V  | 
						
						
							| 54 | 
							
								53
							 | 
							prid2 | 
							 |-  2 e. { 1 , 2 } | 
						
						
							| 55 | 
							
								8 9
							 | 
							ifcld | 
							 |-  ( ph -> if ( 2 = 1 , F , G ) e. ( J Cn K ) )  | 
						
						
							| 56 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( k = 2 -> ( k = 1 <-> 2 = 1 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							ifbid | 
							 |-  ( k = 2 -> if ( k = 1 , F , G ) = if ( 2 = 1 , F , G ) )  | 
						
						
							| 58 | 
							
								57 5
							 | 
							fvmptg | 
							 |-  ( ( 2 e. { 1 , 2 } /\ if ( 2 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) | 
						
						
							| 59 | 
							
								54 55 58
							 | 
							sylancr | 
							 |-  ( ph -> ( A ` 2 ) = if ( 2 = 1 , F , G ) )  | 
						
						
							| 60 | 
							
								
							 | 
							1ne2 | 
							 |-  1 =/= 2  | 
						
						
							| 61 | 
							
								60
							 | 
							nesymi | 
							 |-  -. 2 = 1  | 
						
						
							| 62 | 
							
								61
							 | 
							iffalsei | 
							 |-  if ( 2 = 1 , F , G ) = G  | 
						
						
							| 63 | 
							
								59 62
							 | 
							eqtrdi | 
							 |-  ( ph -> ( A ` 2 ) = G )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. X ) -> ( A ` 2 ) = G )  | 
						
						
							| 65 | 
							
								64
							 | 
							fveq1d | 
							 |-  ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) = ( G ` x ) )  | 
						
						
							| 66 | 
							
								35 36
							 | 
							cnf | 
							 |-  ( G e. ( J Cn K ) -> G : U. J --> U. K )  | 
						
						
							| 67 | 
							
								9 66
							 | 
							syl | 
							 |-  ( ph -> G : U. J --> U. K )  | 
						
						
							| 68 | 
							
								41 45
							 | 
							feq23d | 
							 |-  ( ph -> ( G : U. J --> U. K <-> G : X --> RR ) )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							mpbid | 
							 |-  ( ph -> G : X --> RR )  | 
						
						
							| 70 | 
							
								69
							 | 
							anim1i | 
							 |-  ( ( ph /\ x e. X ) -> ( G : X --> RR /\ x e. X ) )  | 
						
						
							| 71 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( G : X --> RR /\ x e. X ) -> ( G ` x ) e. RR )  | 
						
						
							| 72 | 
							
								
							 | 
							recn | 
							 |-  ( ( G ` x ) e. RR -> ( G ` x ) e. CC )  | 
						
						
							| 73 | 
							
								70 71 72
							 | 
							3syl | 
							 |-  ( ( ph /\ x e. X ) -> ( G ` x ) e. CC )  | 
						
						
							| 74 | 
							
								65 73
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) e. CC )  | 
						
						
							| 75 | 
							
								60
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. X ) -> 1 =/= 2 )  | 
						
						
							| 76 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = 1 -> ( A ` k ) = ( A ` 1 ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							fveq1d | 
							 |-  ( k = 1 -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. X ) /\ k = 1 ) -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) )  | 
						
						
							| 79 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = 2 -> ( A ` k ) = ( A ` 2 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							fveq1d | 
							 |-  ( k = 2 -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. X ) /\ k = 2 ) -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) )  | 
						
						
							| 82 | 
							
								16 20 21 22 52 74 75 78 81
							 | 
							sumpair | 
							 |-  ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) ) | 
						
						
							| 83 | 
							
								34 65
							 | 
							oveq12d | 
							 |-  ( ( ph /\ x e. X ) -> ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) = ( ( F ` x ) + ( G ` x ) ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( F ` x ) + ( G ` x ) ) ) | 
						
						
							| 85 | 
							
								4 84
							 | 
							mpteq2da | 
							 |-  ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) = ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) ) | 
						
						
							| 86 | 
							
								
							 | 
							prfi | 
							 |-  { 1 , 2 } e. Fin | 
						
						
							| 87 | 
							
								86
							 | 
							a1i | 
							 |-  ( ph -> { 1 , 2 } e. Fin ) | 
						
						
							| 88 | 
							
								
							 | 
							eqid | 
							 |-  X = X  | 
						
						
							| 89 | 
							
								88
							 | 
							ax-gen | 
							 |-  A. x X = X  | 
						
						
							| 90 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x k  | 
						
						
							| 91 | 
							
								1 90
							 | 
							nffv | 
							 |-  F/_ x ( A ` k )  | 
						
						
							| 92 | 
							
								91 2
							 | 
							nfeq | 
							 |-  F/ x ( A ` k ) = F  | 
						
						
							| 93 | 
							
								
							 | 
							fveq1 | 
							 |-  ( ( A ` k ) = F -> ( ( A ` k ) ` x ) = ( F ` x ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							a1d | 
							 |-  ( ( A ` k ) = F -> ( x e. X -> ( ( A ` k ) ` x ) = ( F ` x ) ) )  | 
						
						
							| 95 | 
							
								92 94
							 | 
							ralrimi | 
							 |-  ( ( A ` k ) = F -> A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) )  | 
						
						
							| 96 | 
							
								
							 | 
							mpteq12f | 
							 |-  ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) )  | 
						
						
							| 97 | 
							
								89 95 96
							 | 
							sylancr | 
							 |-  ( ( A ` k ) = F -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							adantl | 
							 |-  ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							retopon | 
							 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )  | 
						
						
							| 100 | 
							
								6 99
							 | 
							eqeltri | 
							 |-  K e. ( TopOn ` RR )  | 
						
						
							| 101 | 
							
								100
							 | 
							a1i | 
							 |-  ( ph -> K e. ( TopOn ` RR ) )  | 
						
						
							| 102 | 
							
								
							 | 
							cnf2 | 
							 |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : X --> RR )  | 
						
						
							| 103 | 
							
								7 101 8 102
							 | 
							syl3anc | 
							 |-  ( ph -> F : X --> RR )  | 
						
						
							| 104 | 
							
								103
							 | 
							ffnd | 
							 |-  ( ph -> F Fn X )  | 
						
						
							| 105 | 
							
								2
							 | 
							dffn5f | 
							 |-  ( F Fn X <-> F = ( x e. X |-> ( F ` x ) ) )  | 
						
						
							| 106 | 
							
								104 105
							 | 
							sylib | 
							 |-  ( ph -> F = ( x e. X |-> ( F ` x ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							adantr | 
							 |-  ( ( ph /\ ( A ` k ) = F ) -> F = ( x e. X |-> ( F ` x ) ) )  | 
						
						
							| 108 | 
							
								98 107
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = F )  | 
						
						
							| 109 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ ( A ` k ) = F ) -> F e. ( J Cn K ) )  | 
						
						
							| 110 | 
							
								108 109
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) | 
						
						
							| 112 | 
							
								91 3
							 | 
							nfeq | 
							 |-  F/ x ( A ` k ) = G  | 
						
						
							| 113 | 
							
								
							 | 
							fveq1 | 
							 |-  ( ( A ` k ) = G -> ( ( A ` k ) ` x ) = ( G ` x ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							a1d | 
							 |-  ( ( A ` k ) = G -> ( x e. X -> ( ( A ` k ) ` x ) = ( G ` x ) ) )  | 
						
						
							| 115 | 
							
								112 114
							 | 
							ralrimi | 
							 |-  ( ( A ` k ) = G -> A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) )  | 
						
						
							| 116 | 
							
								
							 | 
							mpteq12f | 
							 |-  ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) )  | 
						
						
							| 117 | 
							
								89 115 116
							 | 
							sylancr | 
							 |-  ( ( A ` k ) = G -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							adantl | 
							 |-  ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) )  | 
						
						
							| 119 | 
							
								
							 | 
							cnf2 | 
							 |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ G e. ( J Cn K ) ) -> G : X --> RR )  | 
						
						
							| 120 | 
							
								7 101 9 119
							 | 
							syl3anc | 
							 |-  ( ph -> G : X --> RR )  | 
						
						
							| 121 | 
							
								120
							 | 
							ffnd | 
							 |-  ( ph -> G Fn X )  | 
						
						
							| 122 | 
							
								3
							 | 
							dffn5f | 
							 |-  ( G Fn X <-> G = ( x e. X |-> ( G ` x ) ) )  | 
						
						
							| 123 | 
							
								121 122
							 | 
							sylib | 
							 |-  ( ph -> G = ( x e. X |-> ( G ` x ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							 |-  ( ( ph /\ ( A ` k ) = G ) -> G = ( x e. X |-> ( G ` x ) ) )  | 
						
						
							| 125 | 
							
								118 124
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = G )  | 
						
						
							| 126 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ ( A ` k ) = G ) -> G e. ( J Cn K ) )  | 
						
						
							| 127 | 
							
								125 126
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) | 
						
						
							| 129 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ k e. { 1 , 2 } ) -> k e. { 1 , 2 } ) | 
						
						
							| 130 | 
							
								8 9
							 | 
							ifcld | 
							 |-  ( ph -> if ( k = 1 , F , G ) e. ( J Cn K ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. { 1 , 2 } ) -> if ( k = 1 , F , G ) e. ( J Cn K ) ) | 
						
						
							| 132 | 
							
								5
							 | 
							fvmpt2 | 
							 |-  ( ( k e. { 1 , 2 } /\ if ( k = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` k ) = if ( k = 1 , F , G ) ) | 
						
						
							| 133 | 
							
								129 131 132
							 | 
							syl2anc | 
							 |-  ( ( ph /\ k e. { 1 , 2 } ) -> ( A ` k ) = if ( k = 1 , F , G ) ) | 
						
						
							| 134 | 
							
								
							 | 
							iftrue | 
							 |-  ( k = 1 -> if ( k = 1 , F , G ) = F )  | 
						
						
							| 135 | 
							
								133 134
							 | 
							sylan9eq | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( A ` k ) = F ) | 
						
						
							| 136 | 
							
								135
							 | 
							orcd | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) | 
						
						
							| 137 | 
							
								133
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = if ( k = 1 , F , G ) ) | 
						
						
							| 138 | 
							
								
							 | 
							neeq2 | 
							 |-  ( k = 2 -> ( 1 =/= k <-> 1 =/= 2 ) )  | 
						
						
							| 139 | 
							
								60 138
							 | 
							mpbiri | 
							 |-  ( k = 2 -> 1 =/= k )  | 
						
						
							| 140 | 
							
								139
							 | 
							necomd | 
							 |-  ( k = 2 -> k =/= 1 )  | 
						
						
							| 141 | 
							
								140
							 | 
							neneqd | 
							 |-  ( k = 2 -> -. k = 1 )  | 
						
						
							| 142 | 
							
								141
							 | 
							adantl | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> -. k = 1 ) | 
						
						
							| 143 | 
							
								142
							 | 
							iffalsed | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> if ( k = 1 , F , G ) = G ) | 
						
						
							| 144 | 
							
								137 143
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = G ) | 
						
						
							| 145 | 
							
								144
							 | 
							olcd | 
							 |-  ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) | 
						
						
							| 146 | 
							
								
							 | 
							elpri | 
							 |-  ( k e. { 1 , 2 } -> ( k = 1 \/ k = 2 ) ) | 
						
						
							| 147 | 
							
								146
							 | 
							adantl | 
							 |-  ( ( ph /\ k e. { 1 , 2 } ) -> ( k = 1 \/ k = 2 ) ) | 
						
						
							| 148 | 
							
								136 145 147
							 | 
							mpjaodan | 
							 |-  ( ( ph /\ k e. { 1 , 2 } ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) | 
						
						
							| 149 | 
							
								111 128 148
							 | 
							mpjaodan | 
							 |-  ( ( ph /\ k e. { 1 , 2 } ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) | 
						
						
							| 150 | 
							
								4 6 7 87 149
							 | 
							refsumcn | 
							 |-  ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) | 
						
						
							| 151 | 
							
								85 150
							 | 
							eqeltrrd | 
							 |-  ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) )  |