Step |
Hyp |
Ref |
Expression |
1 |
|
refsum2cnlem1.1 |
|- F/_ x A |
2 |
|
refsum2cnlem1.2 |
|- F/_ x F |
3 |
|
refsum2cnlem1.3 |
|- F/_ x G |
4 |
|
refsum2cnlem1.4 |
|- F/ x ph |
5 |
|
refsum2cnlem1.5 |
|- A = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
6 |
|
refsum2cnlem1.6 |
|- K = ( topGen ` ran (,) ) |
7 |
|
refsum2cnlem1.7 |
|- ( ph -> J e. ( TopOn ` X ) ) |
8 |
|
refsum2cnlem1.8 |
|- ( ph -> F e. ( J Cn K ) ) |
9 |
|
refsum2cnlem1.9 |
|- ( ph -> G e. ( J Cn K ) ) |
10 |
|
nfmpt1 |
|- F/_ k ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
11 |
5 10
|
nfcxfr |
|- F/_ k A |
12 |
|
nfcv |
|- F/_ k 1 |
13 |
11 12
|
nffv |
|- F/_ k ( A ` 1 ) |
14 |
|
nfcv |
|- F/_ k x |
15 |
13 14
|
nffv |
|- F/_ k ( ( A ` 1 ) ` x ) |
16 |
15
|
a1i |
|- ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 1 ) ` x ) ) |
17 |
|
nfcv |
|- F/_ k 2 |
18 |
11 17
|
nffv |
|- F/_ k ( A ` 2 ) |
19 |
18 14
|
nffv |
|- F/_ k ( ( A ` 2 ) ` x ) |
20 |
19
|
a1i |
|- ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 2 ) ` x ) ) |
21 |
|
1cnd |
|- ( ( ph /\ x e. X ) -> 1 e. CC ) |
22 |
|
2cnd |
|- ( ( ph /\ x e. X ) -> 2 e. CC ) |
23 |
|
1ex |
|- 1 e. _V |
24 |
23
|
prid1 |
|- 1 e. { 1 , 2 } |
25 |
8 9
|
ifcld |
|- ( ph -> if ( 1 = 1 , F , G ) e. ( J Cn K ) ) |
26 |
|
eqeq1 |
|- ( k = 1 -> ( k = 1 <-> 1 = 1 ) ) |
27 |
26
|
ifbid |
|- ( k = 1 -> if ( k = 1 , F , G ) = if ( 1 = 1 , F , G ) ) |
28 |
27 5
|
fvmptg |
|- ( ( 1 e. { 1 , 2 } /\ if ( 1 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) |
29 |
24 25 28
|
sylancr |
|- ( ph -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) |
30 |
|
eqid |
|- 1 = 1 |
31 |
30
|
iftruei |
|- if ( 1 = 1 , F , G ) = F |
32 |
29 31
|
eqtrdi |
|- ( ph -> ( A ` 1 ) = F ) |
33 |
32
|
adantr |
|- ( ( ph /\ x e. X ) -> ( A ` 1 ) = F ) |
34 |
33
|
fveq1d |
|- ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) = ( F ` x ) ) |
35 |
|
eqid |
|- U. J = U. J |
36 |
|
eqid |
|- U. K = U. K |
37 |
35 36
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
38 |
8 37
|
syl |
|- ( ph -> F : U. J --> U. K ) |
39 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
40 |
7 39
|
syl |
|- ( ph -> X = U. J ) |
41 |
40
|
eqcomd |
|- ( ph -> U. J = X ) |
42 |
6
|
unieqi |
|- U. K = U. ( topGen ` ran (,) ) |
43 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
44 |
42 43
|
eqtr4i |
|- U. K = RR |
45 |
44
|
a1i |
|- ( ph -> U. K = RR ) |
46 |
41 45
|
feq23d |
|- ( ph -> ( F : U. J --> U. K <-> F : X --> RR ) ) |
47 |
38 46
|
mpbid |
|- ( ph -> F : X --> RR ) |
48 |
47
|
anim1i |
|- ( ( ph /\ x e. X ) -> ( F : X --> RR /\ x e. X ) ) |
49 |
|
ffvelrn |
|- ( ( F : X --> RR /\ x e. X ) -> ( F ` x ) e. RR ) |
50 |
|
recn |
|- ( ( F ` x ) e. RR -> ( F ` x ) e. CC ) |
51 |
48 49 50
|
3syl |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
52 |
34 51
|
eqeltrd |
|- ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) e. CC ) |
53 |
|
2ex |
|- 2 e. _V |
54 |
53
|
prid2 |
|- 2 e. { 1 , 2 } |
55 |
8 9
|
ifcld |
|- ( ph -> if ( 2 = 1 , F , G ) e. ( J Cn K ) ) |
56 |
|
eqeq1 |
|- ( k = 2 -> ( k = 1 <-> 2 = 1 ) ) |
57 |
56
|
ifbid |
|- ( k = 2 -> if ( k = 1 , F , G ) = if ( 2 = 1 , F , G ) ) |
58 |
57 5
|
fvmptg |
|- ( ( 2 e. { 1 , 2 } /\ if ( 2 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) |
59 |
54 55 58
|
sylancr |
|- ( ph -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) |
60 |
|
1ne2 |
|- 1 =/= 2 |
61 |
60
|
nesymi |
|- -. 2 = 1 |
62 |
61
|
iffalsei |
|- if ( 2 = 1 , F , G ) = G |
63 |
59 62
|
eqtrdi |
|- ( ph -> ( A ` 2 ) = G ) |
64 |
63
|
adantr |
|- ( ( ph /\ x e. X ) -> ( A ` 2 ) = G ) |
65 |
64
|
fveq1d |
|- ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) = ( G ` x ) ) |
66 |
35 36
|
cnf |
|- ( G e. ( J Cn K ) -> G : U. J --> U. K ) |
67 |
9 66
|
syl |
|- ( ph -> G : U. J --> U. K ) |
68 |
41 45
|
feq23d |
|- ( ph -> ( G : U. J --> U. K <-> G : X --> RR ) ) |
69 |
67 68
|
mpbid |
|- ( ph -> G : X --> RR ) |
70 |
69
|
anim1i |
|- ( ( ph /\ x e. X ) -> ( G : X --> RR /\ x e. X ) ) |
71 |
|
ffvelrn |
|- ( ( G : X --> RR /\ x e. X ) -> ( G ` x ) e. RR ) |
72 |
|
recn |
|- ( ( G ` x ) e. RR -> ( G ` x ) e. CC ) |
73 |
70 71 72
|
3syl |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
74 |
65 73
|
eqeltrd |
|- ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) e. CC ) |
75 |
60
|
a1i |
|- ( ( ph /\ x e. X ) -> 1 =/= 2 ) |
76 |
|
fveq2 |
|- ( k = 1 -> ( A ` k ) = ( A ` 1 ) ) |
77 |
76
|
fveq1d |
|- ( k = 1 -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) ) |
78 |
77
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ k = 1 ) -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) ) |
79 |
|
fveq2 |
|- ( k = 2 -> ( A ` k ) = ( A ` 2 ) ) |
80 |
79
|
fveq1d |
|- ( k = 2 -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) ) |
81 |
80
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ k = 2 ) -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) ) |
82 |
16 20 21 22 52 74 75 78 81
|
sumpair |
|- ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) ) |
83 |
34 65
|
oveq12d |
|- ( ( ph /\ x e. X ) -> ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) = ( ( F ` x ) + ( G ` x ) ) ) |
84 |
82 83
|
eqtrd |
|- ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( F ` x ) + ( G ` x ) ) ) |
85 |
4 84
|
mpteq2da |
|- ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) = ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) ) |
86 |
|
prfi |
|- { 1 , 2 } e. Fin |
87 |
86
|
a1i |
|- ( ph -> { 1 , 2 } e. Fin ) |
88 |
|
eqid |
|- X = X |
89 |
88
|
ax-gen |
|- A. x X = X |
90 |
|
nfcv |
|- F/_ x k |
91 |
1 90
|
nffv |
|- F/_ x ( A ` k ) |
92 |
91 2
|
nfeq |
|- F/ x ( A ` k ) = F |
93 |
|
fveq1 |
|- ( ( A ` k ) = F -> ( ( A ` k ) ` x ) = ( F ` x ) ) |
94 |
93
|
a1d |
|- ( ( A ` k ) = F -> ( x e. X -> ( ( A ` k ) ` x ) = ( F ` x ) ) ) |
95 |
92 94
|
ralrimi |
|- ( ( A ` k ) = F -> A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) |
96 |
|
mpteq12f |
|- ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
97 |
89 95 96
|
sylancr |
|- ( ( A ` k ) = F -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
98 |
97
|
adantl |
|- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
99 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
100 |
6 99
|
eqeltri |
|- K e. ( TopOn ` RR ) |
101 |
100
|
a1i |
|- ( ph -> K e. ( TopOn ` RR ) ) |
102 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : X --> RR ) |
103 |
7 101 8 102
|
syl3anc |
|- ( ph -> F : X --> RR ) |
104 |
103
|
ffnd |
|- ( ph -> F Fn X ) |
105 |
2
|
dffn5f |
|- ( F Fn X <-> F = ( x e. X |-> ( F ` x ) ) ) |
106 |
104 105
|
sylib |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
107 |
106
|
adantr |
|- ( ( ph /\ ( A ` k ) = F ) -> F = ( x e. X |-> ( F ` x ) ) ) |
108 |
98 107
|
eqtr4d |
|- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = F ) |
109 |
8
|
adantr |
|- ( ( ph /\ ( A ` k ) = F ) -> F e. ( J Cn K ) ) |
110 |
108 109
|
eqeltrd |
|- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
111 |
110
|
adantlr |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
112 |
91 3
|
nfeq |
|- F/ x ( A ` k ) = G |
113 |
|
fveq1 |
|- ( ( A ` k ) = G -> ( ( A ` k ) ` x ) = ( G ` x ) ) |
114 |
113
|
a1d |
|- ( ( A ` k ) = G -> ( x e. X -> ( ( A ` k ) ` x ) = ( G ` x ) ) ) |
115 |
112 114
|
ralrimi |
|- ( ( A ` k ) = G -> A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) |
116 |
|
mpteq12f |
|- ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
117 |
89 115 116
|
sylancr |
|- ( ( A ` k ) = G -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
118 |
117
|
adantl |
|- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
119 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ G e. ( J Cn K ) ) -> G : X --> RR ) |
120 |
7 101 9 119
|
syl3anc |
|- ( ph -> G : X --> RR ) |
121 |
120
|
ffnd |
|- ( ph -> G Fn X ) |
122 |
3
|
dffn5f |
|- ( G Fn X <-> G = ( x e. X |-> ( G ` x ) ) ) |
123 |
121 122
|
sylib |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
124 |
123
|
adantr |
|- ( ( ph /\ ( A ` k ) = G ) -> G = ( x e. X |-> ( G ` x ) ) ) |
125 |
118 124
|
eqtr4d |
|- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = G ) |
126 |
9
|
adantr |
|- ( ( ph /\ ( A ` k ) = G ) -> G e. ( J Cn K ) ) |
127 |
125 126
|
eqeltrd |
|- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
128 |
127
|
adantlr |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
129 |
|
simpr |
|- ( ( ph /\ k e. { 1 , 2 } ) -> k e. { 1 , 2 } ) |
130 |
8 9
|
ifcld |
|- ( ph -> if ( k = 1 , F , G ) e. ( J Cn K ) ) |
131 |
130
|
adantr |
|- ( ( ph /\ k e. { 1 , 2 } ) -> if ( k = 1 , F , G ) e. ( J Cn K ) ) |
132 |
5
|
fvmpt2 |
|- ( ( k e. { 1 , 2 } /\ if ( k = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
133 |
129 131 132
|
syl2anc |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
134 |
|
iftrue |
|- ( k = 1 -> if ( k = 1 , F , G ) = F ) |
135 |
133 134
|
sylan9eq |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( A ` k ) = F ) |
136 |
135
|
orcd |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
137 |
133
|
adantr |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
138 |
|
neeq2 |
|- ( k = 2 -> ( 1 =/= k <-> 1 =/= 2 ) ) |
139 |
60 138
|
mpbiri |
|- ( k = 2 -> 1 =/= k ) |
140 |
139
|
necomd |
|- ( k = 2 -> k =/= 1 ) |
141 |
140
|
neneqd |
|- ( k = 2 -> -. k = 1 ) |
142 |
141
|
adantl |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> -. k = 1 ) |
143 |
142
|
iffalsed |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> if ( k = 1 , F , G ) = G ) |
144 |
137 143
|
eqtrd |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = G ) |
145 |
144
|
olcd |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
146 |
|
elpri |
|- ( k e. { 1 , 2 } -> ( k = 1 \/ k = 2 ) ) |
147 |
146
|
adantl |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( k = 1 \/ k = 2 ) ) |
148 |
136 145 147
|
mpjaodan |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
149 |
111 128 148
|
mpjaodan |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
150 |
4 6 7 87 149
|
refsumcn |
|- ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
151 |
85 150
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) ) |