Metamath Proof Explorer


Theorem refsumcn

Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsumcn.1
|- F/ x ph
refsumcn.2
|- K = ( topGen ` ran (,) )
refsumcn.3
|- ( ph -> J e. ( TopOn ` X ) )
refsumcn.4
|- ( ph -> A e. Fin )
refsumcn.5
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) )
Assertion refsumcn
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 refsumcn.1
 |-  F/ x ph
2 refsumcn.2
 |-  K = ( topGen ` ran (,) )
3 refsumcn.3
 |-  ( ph -> J e. ( TopOn ` X ) )
4 refsumcn.4
 |-  ( ph -> A e. Fin )
5 refsumcn.5
 |-  ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) )
6 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
7 6 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
8 2 7 eqtri
 |-  K = ( ( TopOpen ` CCfld ) |`t RR )
9 8 oveq2i
 |-  ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) )
10 5 9 eleqtrdi
 |-  ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) )
11 6 cnfldtopon
 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )
12 11 a1i
 |-  ( ( ph /\ k e. A ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) )
13 3 adantr
 |-  ( ( ph /\ k e. A ) -> J e. ( TopOn ` X ) )
14 retopon
 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )
15 2 14 eqeltri
 |-  K e. ( TopOn ` RR )
16 15 a1i
 |-  ( ( ph /\ k e. A ) -> K e. ( TopOn ` RR ) )
17 cnf2
 |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ ( x e. X |-> B ) e. ( J Cn K ) ) -> ( x e. X |-> B ) : X --> RR )
18 13 16 5 17 syl3anc
 |-  ( ( ph /\ k e. A ) -> ( x e. X |-> B ) : X --> RR )
19 18 frnd
 |-  ( ( ph /\ k e. A ) -> ran ( x e. X |-> B ) C_ RR )
20 ax-resscn
 |-  RR C_ CC
21 20 a1i
 |-  ( ( ph /\ k e. A ) -> RR C_ CC )
22 cnrest2
 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. X |-> B ) C_ RR /\ RR C_ CC ) -> ( ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) )
23 12 19 21 22 syl3anc
 |-  ( ( ph /\ k e. A ) -> ( ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) )
24 10 23 mpbird
 |-  ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) )
25 6 3 4 24 fsumcnf
 |-  ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) )
26 11 a1i
 |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) )
27 4 adantr
 |-  ( ( ph /\ x e. X ) -> A e. Fin )
28 simpll
 |-  ( ( ( ph /\ x e. X ) /\ k e. A ) -> ph )
29 simpr
 |-  ( ( ( ph /\ x e. X ) /\ k e. A ) -> k e. A )
30 28 29 jca
 |-  ( ( ( ph /\ x e. X ) /\ k e. A ) -> ( ph /\ k e. A ) )
31 simplr
 |-  ( ( ( ph /\ x e. X ) /\ k e. A ) -> x e. X )
32 eqid
 |-  ( x e. X |-> B ) = ( x e. X |-> B )
33 32 fmpt
 |-  ( A. x e. X B e. RR <-> ( x e. X |-> B ) : X --> RR )
34 18 33 sylibr
 |-  ( ( ph /\ k e. A ) -> A. x e. X B e. RR )
35 rsp
 |-  ( A. x e. X B e. RR -> ( x e. X -> B e. RR ) )
36 34 35 syl
 |-  ( ( ph /\ k e. A ) -> ( x e. X -> B e. RR ) )
37 30 31 36 sylc
 |-  ( ( ( ph /\ x e. X ) /\ k e. A ) -> B e. RR )
38 27 37 fsumrecl
 |-  ( ( ph /\ x e. X ) -> sum_ k e. A B e. RR )
39 38 ex
 |-  ( ph -> ( x e. X -> sum_ k e. A B e. RR ) )
40 1 39 ralrimi
 |-  ( ph -> A. x e. X sum_ k e. A B e. RR )
41 eqid
 |-  ( x e. X |-> sum_ k e. A B ) = ( x e. X |-> sum_ k e. A B )
42 41 fnmpt
 |-  ( A. x e. X sum_ k e. A B e. RR -> ( x e. X |-> sum_ k e. A B ) Fn X )
43 40 42 syl
 |-  ( ph -> ( x e. X |-> sum_ k e. A B ) Fn X )
44 nfcv
 |-  F/_ x X
45 nfcv
 |-  F/_ x y
46 nfmpt1
 |-  F/_ x ( x e. X |-> sum_ k e. A B )
47 44 45 46 fvelrnbf
 |-  ( ( x e. X |-> sum_ k e. A B ) Fn X -> ( y e. ran ( x e. X |-> sum_ k e. A B ) <-> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) )
48 43 47 syl
 |-  ( ph -> ( y e. ran ( x e. X |-> sum_ k e. A B ) <-> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) )
49 48 biimpa
 |-  ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y )
50 46 nfrn
 |-  F/_ x ran ( x e. X |-> sum_ k e. A B )
51 50 nfcri
 |-  F/ x y e. ran ( x e. X |-> sum_ k e. A B )
52 1 51 nfan
 |-  F/ x ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) )
53 nfcv
 |-  F/_ x RR
54 53 nfcri
 |-  F/ x y e. RR
55 simpr
 |-  ( ( ph /\ x e. X ) -> x e. X )
56 55 38 jca
 |-  ( ( ph /\ x e. X ) -> ( x e. X /\ sum_ k e. A B e. RR ) )
57 41 fvmpt2
 |-  ( ( x e. X /\ sum_ k e. A B e. RR ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B )
58 56 57 syl
 |-  ( ( ph /\ x e. X ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B )
59 58 3adant3
 |-  ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B )
60 simp3
 |-  ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = y )
61 59 60 eqtr3d
 |-  ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> sum_ k e. A B = y )
62 38 3adant3
 |-  ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> sum_ k e. A B e. RR )
63 61 62 eqeltrrd
 |-  ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> y e. RR )
64 63 3adant1r
 |-  ( ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> y e. RR )
65 64 3exp
 |-  ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> ( x e. X -> ( ( ( x e. X |-> sum_ k e. A B ) ` x ) = y -> y e. RR ) ) )
66 52 54 65 rexlimd
 |-  ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> ( E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y -> y e. RR ) )
67 49 66 mpd
 |-  ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> y e. RR )
68 67 ex
 |-  ( ph -> ( y e. ran ( x e. X |-> sum_ k e. A B ) -> y e. RR ) )
69 68 ssrdv
 |-  ( ph -> ran ( x e. X |-> sum_ k e. A B ) C_ RR )
70 20 a1i
 |-  ( ph -> RR C_ CC )
71 cnrest2
 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. X |-> sum_ k e. A B ) C_ RR /\ RR C_ CC ) -> ( ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) )
72 26 69 70 71 syl3anc
 |-  ( ph -> ( ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) )
73 25 72 mpbid
 |-  ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) )
74 73 9 eleqtrrdi
 |-  ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) )