Step |
Hyp |
Ref |
Expression |
1 |
|
refsumcn.1 |
|- F/ x ph |
2 |
|
refsumcn.2 |
|- K = ( topGen ` ran (,) ) |
3 |
|
refsumcn.3 |
|- ( ph -> J e. ( TopOn ` X ) ) |
4 |
|
refsumcn.4 |
|- ( ph -> A e. Fin ) |
5 |
|
refsumcn.5 |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
7 |
6
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
8 |
2 7
|
eqtri |
|- K = ( ( TopOpen ` CCfld ) |`t RR ) |
9 |
8
|
oveq2i |
|- ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
10 |
5 9
|
eleqtrdi |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
11 |
6
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
12 |
11
|
a1i |
|- ( ( ph /\ k e. A ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
13 |
3
|
adantr |
|- ( ( ph /\ k e. A ) -> J e. ( TopOn ` X ) ) |
14 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
15 |
2 14
|
eqeltri |
|- K e. ( TopOn ` RR ) |
16 |
15
|
a1i |
|- ( ( ph /\ k e. A ) -> K e. ( TopOn ` RR ) ) |
17 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ ( x e. X |-> B ) e. ( J Cn K ) ) -> ( x e. X |-> B ) : X --> RR ) |
18 |
13 16 5 17
|
syl3anc |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) : X --> RR ) |
19 |
18
|
frnd |
|- ( ( ph /\ k e. A ) -> ran ( x e. X |-> B ) C_ RR ) |
20 |
|
ax-resscn |
|- RR C_ CC |
21 |
20
|
a1i |
|- ( ( ph /\ k e. A ) -> RR C_ CC ) |
22 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. X |-> B ) C_ RR /\ RR C_ CC ) -> ( ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
23 |
12 19 21 22
|
syl3anc |
|- ( ( ph /\ k e. A ) -> ( ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
24 |
10 23
|
mpbird |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
25 |
6 3 4 24
|
fsumcnf |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
26 |
11
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
27 |
4
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. Fin ) |
28 |
|
simpll |
|- ( ( ( ph /\ x e. X ) /\ k e. A ) -> ph ) |
29 |
|
simpr |
|- ( ( ( ph /\ x e. X ) /\ k e. A ) -> k e. A ) |
30 |
28 29
|
jca |
|- ( ( ( ph /\ x e. X ) /\ k e. A ) -> ( ph /\ k e. A ) ) |
31 |
|
simplr |
|- ( ( ( ph /\ x e. X ) /\ k e. A ) -> x e. X ) |
32 |
|
eqid |
|- ( x e. X |-> B ) = ( x e. X |-> B ) |
33 |
32
|
fmpt |
|- ( A. x e. X B e. RR <-> ( x e. X |-> B ) : X --> RR ) |
34 |
18 33
|
sylibr |
|- ( ( ph /\ k e. A ) -> A. x e. X B e. RR ) |
35 |
|
rsp |
|- ( A. x e. X B e. RR -> ( x e. X -> B e. RR ) ) |
36 |
34 35
|
syl |
|- ( ( ph /\ k e. A ) -> ( x e. X -> B e. RR ) ) |
37 |
30 31 36
|
sylc |
|- ( ( ( ph /\ x e. X ) /\ k e. A ) -> B e. RR ) |
38 |
27 37
|
fsumrecl |
|- ( ( ph /\ x e. X ) -> sum_ k e. A B e. RR ) |
39 |
38
|
ex |
|- ( ph -> ( x e. X -> sum_ k e. A B e. RR ) ) |
40 |
1 39
|
ralrimi |
|- ( ph -> A. x e. X sum_ k e. A B e. RR ) |
41 |
|
eqid |
|- ( x e. X |-> sum_ k e. A B ) = ( x e. X |-> sum_ k e. A B ) |
42 |
41
|
fnmpt |
|- ( A. x e. X sum_ k e. A B e. RR -> ( x e. X |-> sum_ k e. A B ) Fn X ) |
43 |
40 42
|
syl |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) Fn X ) |
44 |
|
nfcv |
|- F/_ x X |
45 |
|
nfcv |
|- F/_ x y |
46 |
|
nfmpt1 |
|- F/_ x ( x e. X |-> sum_ k e. A B ) |
47 |
44 45 46
|
fvelrnbf |
|- ( ( x e. X |-> sum_ k e. A B ) Fn X -> ( y e. ran ( x e. X |-> sum_ k e. A B ) <-> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) ) |
48 |
43 47
|
syl |
|- ( ph -> ( y e. ran ( x e. X |-> sum_ k e. A B ) <-> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) ) |
49 |
48
|
biimpa |
|- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) |
50 |
46
|
nfrn |
|- F/_ x ran ( x e. X |-> sum_ k e. A B ) |
51 |
50
|
nfcri |
|- F/ x y e. ran ( x e. X |-> sum_ k e. A B ) |
52 |
1 51
|
nfan |
|- F/ x ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) |
53 |
|
nfcv |
|- F/_ x RR |
54 |
53
|
nfcri |
|- F/ x y e. RR |
55 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
56 |
55 38
|
jca |
|- ( ( ph /\ x e. X ) -> ( x e. X /\ sum_ k e. A B e. RR ) ) |
57 |
41
|
fvmpt2 |
|- ( ( x e. X /\ sum_ k e. A B e. RR ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B ) |
58 |
56 57
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B ) |
59 |
58
|
3adant3 |
|- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B ) |
60 |
|
simp3 |
|- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) |
61 |
59 60
|
eqtr3d |
|- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> sum_ k e. A B = y ) |
62 |
38
|
3adant3 |
|- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> sum_ k e. A B e. RR ) |
63 |
61 62
|
eqeltrrd |
|- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> y e. RR ) |
64 |
63
|
3adant1r |
|- ( ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> y e. RR ) |
65 |
64
|
3exp |
|- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> ( x e. X -> ( ( ( x e. X |-> sum_ k e. A B ) ` x ) = y -> y e. RR ) ) ) |
66 |
52 54 65
|
rexlimd |
|- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> ( E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y -> y e. RR ) ) |
67 |
49 66
|
mpd |
|- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> y e. RR ) |
68 |
67
|
ex |
|- ( ph -> ( y e. ran ( x e. X |-> sum_ k e. A B ) -> y e. RR ) ) |
69 |
68
|
ssrdv |
|- ( ph -> ran ( x e. X |-> sum_ k e. A B ) C_ RR ) |
70 |
20
|
a1i |
|- ( ph -> RR C_ CC ) |
71 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. X |-> sum_ k e. A B ) C_ RR /\ RR C_ CC ) -> ( ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
72 |
26 69 70 71
|
syl3anc |
|- ( ph -> ( ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
73 |
25 72
|
mpbid |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
74 |
73 9
|
eleqtrrdi |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) |